Science Satellite Operation and Data Archive Unit

篠原 育

シノハラ イク  (Iku SHINOHARA)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系 教授
学位
博士(理学)(東京大学)

J-GLOBAL ID
200901025081752002
researchmap会員ID
5000018897

論文

 224
  • P. R. Shreedevi, Yiqun Yu, Yoshizumi Miyoshi, Xingbin Tian, Minghui Zhu, Vania K. Jordanova, Satoko Nakamura, Chae‐Woo Jun, Sandeep Kumar, Kazuo Shiokawa, Martin Connors, T. Hori, Masafumi Shoji, I. Shinohara, S. Yokota, S. Kasahara, K. Keika, A. Matsuoka, Akira Kadokura, Fuminori Tsuchiya, Atsushi Kumamoto, Yoshiya Kasahara
    Journal of Geophysical Research: Space Physics 129(6) 2024年5月29日  
    Abstract Recent simulation studies using the RAM‐SCB model showed that proton precipitation contributes significantly to the total energy flux deposited into the subauroral ionosphere thereby affecting the magnetosphere‐ionosphere coupling. In this study, we use the BATS‐R‐US + RAM‐SCB model to understand the evolution of ElectroMagnetic Ion Cyclotron (EMIC) waves in the inner magnetosphere, their correspondence to the proton precipitation into the subauroral ionosphere, and to assess the performance of the model in reproducing the EMIC wave‐particle interactions. During the 27 May 2017 storm, Arase and RBSP‐A satellites observed typical signatures of EMIC waves in the inner magnetosphere. Within this interval, Defense Meteorological Satellite Program (DMSP) and National Oceanic and Atmospheric Administration (NOAA)/MetOp satellites observed significant proton precipitation in the dusk‐midnight sector. Simulation results show that H‐ and He‐band EMIC waves are excited within regions of strong temperature anisotropy near the plasmapause. The simulated growth rates of EMIC waves show a similar trend to that of the EMIC wave power observed by the Arase and RBSP‐A satellites, suggesting that the model can reproduce the EMIC wave activity qualitatively. The simulated H‐band waves in the dusk sector are stronger than He‐band waves possibly due to the presence of excess protons in the boundary conditions obtained from the BATS‐R‐US code. The precipitating proton fluxes reproduced by the simulation with EMIC waves are found to agree reasonably well with the DMSP and NOAA/MetOp satellite observations. It is suggested that EMIC wave scattering of ring current ions can account for proton precipitation observed by the DMSP and MetOp satellites during the 27 May 2017 storm.
  • K.‐H. Kim, C.‐W. Jun, J.‐W. Kwon, J. Lee, K. Shiokawa, Y. Miyoshi, E.‐H. Kim, K. Min, J. Seough, K. Asamura, I. Shinohara, A. Matsuoka, S. Yokota, Y. Kasahara, S. Kasahara, T. Hori, K. Keika, A. Kumamoto, F. Tsuchiya
    Journal of Geophysical Research: Space Physics 129(5) 2024年5月6日  
    Abstract This is the first report of significant energization (up to 7,000 eV) of low‐energy He+ ions, which occurred simultaneously with H‐band electromagnetic ion cyclotron (EMIC) wave activity, in a direction mostly perpendicular to the ambient magnetic field. The event was detected by the Arase satellite in the dayside plasmatrough region off the magnetic equator on 15 May 2019. The peak energy of the He+ flux enhancements is mostly above 1,000 eV. At some interval, the He+ ions are energized up to ∼7,000 eV. The H‐band waves are excited in a frequency band between the local crossover and helium gyrofrequencies and are close to a linear polarization state with weakly left‐handed or right‐handed polarization. The normal angle of the waves exhibits significant variation between 0° and 80°, indicating a non‐parallel propagation. We run a hybrid code with parameters estimated from the Arase observations to examine the He+ energization. The simulations show that cold He+ ions are energized up to more than 1,000 eV, similar to the spacecraft observations. From the analysis of the simulated wave fields and cold plasma motions, we found that the ratio of the wave frequency to He+ gyrofrequency is a primary factor for transverse energization of cold He+ ions. As a consequence of the numerical analysis, we suggest that the significant transverse energization of He+ ions observed by Arase is attributed to H‐band EMIC waves excited near the local helium gyrofrequency.
  • K. Yamamoto, A. V. Rubtsov, D. V. Kostarev, P. N. Mager, D. Yu. Klimushkin, M. Nosé, A. Matsuoka, K. Asamura, Y. Miyoshi, S. Yokota, S. Kasahara, T. Hori, K. Keika, Y. Kasahara, A. Kumamoto, F. Tsuchiya, M. Shoji, S. Nakamura, I. Shinohara
    Geophysical Research Letters 51(8) 2024年4月17日  
    Abstract We present the first direct evidence of an in situ excitation of drift‐compressional waves driven by drift resonance with ring current protons in the magnetosphere. Compressional Pc4–5 waves with frequencies of 4–12 mHz were observed by the Arase satellite near the magnetic equator at L ∼ 6 in the evening sector on 19 November 2018. Estimated azimuthal wave numbers (m) ranged from −100 to −130. The observed frequency was consistent with that calculated using the drift‐compressional mode theory, whereas the plasma anisotropy was too small to excite the drift‐mirror mode. We discovered that the energy source of the wave was a drift resonance instability, which was generated by the negative radial gradient in a proton phase space density at 20–25 keV. This proton distribution is attributed to a temporal variation of the electric field, which formed the observed multiple‐nose structures of ring current protons.
  • Sai Zhang, Qinpei Yin, Hongming Yang, Fuliang Xiao, Qinghua Zhou, Qiwu Yang, Jiawen Tang, Zhoukun Deng, Yoshiya Kasahara, Yoshizumi Miyoshi, Atsushi Kumamoto, Yosuke Nakamura, Fuminori Tsuchiya, Iku Shinohara, Satoko Nakamura, Yasumasa Kasaba, Tomoaki Hori
    Geophysical Research Letters 51(5) 2024年2月28日  
    Abstract Previous studies have shown that auroral kilometric radiation (AKR) can play an important role in the magnetosphere‐atmosphere coupling and has the right‐handed extraordinary (R‐X), left‐handed ordinary (L‐O) and left‐handed extraordinary (L‐X) modes. However, the L‐X mode has not been directly observed in the lower latitude magnetosphere yet, probably because of its very limited frequency range. Here, using observations of the Arase satellite on 6 September 2018, we present an AKR event with two distinct bands (8–20 and 300–1000 kHz) around the location: L = 8 and latitude = −37°. The low (high) band is identified as the L‐X (R‐X) mode based on the polarization and frequency ranges. Simulations of 3‐D ray tracing show that most of ray paths with 14 (11 and 18) kHz pass (miss) the location of Arase, basically consistent with observations. Our study provides direct evidence that the L‐X mode can propagate from high latitudes downward to lower latitudes.
  • Zhiyong Wu, Zhenpeng Su, Huinan Zheng, Yuming Wang, Yoshizumi Miyoshi, Iku Shinohara, Ayako Matsuoka, Yoshiya Kasahara, Fuminori Tsuchiya, Atsushi Kumamoto, Shoya Matsuda, Yasumasa Kasaba, Mariko Teramoto, Tomoaki Hori
    Geophysical Research Letters 51(4) 2024年2月15日  
    Abstract Plasmaspheric hiss waves are important to shape the Earth’s electron radiation belt. These waves are commonly envisioned to have a long lifetime which allows them to permeate the global plasmasphere from a spatially restricted source. However, this hypothesis has not been experimentally confirmed yet, because of the challenging observational requirements in terms of location and timing. With wave and particle measurements from five magnetospheric satellites and detailed modeling, we present the first report of long lifetime (∼42 s) hiss rays in the substorm‐disturbed plasmasphere. The low‐frequency hiss waves are found to originate from the middle piece of the plasmaspheric plume, bounce between two hemispheres, and eventually drift into the plasmaspheric core. These hiss rays can travel through ∼3 hr magnetic local time and ∼4 magnetic shell. Such a long‐time and large‐scale permeation of hiss rays could benefit from the ducting process by plasmaspheric field‐aligned density irregularities.

MISC

 73

共同研究・競争的資金等の研究課題

 17