研究者業績

坂井 真一郎

サカイ シンイチロウ  (Shin-ichiro Sakai)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙機応用工学研究系 教授
学位
博士(工学)(2000年3月 東京大学)

研究者番号
10342619
J-GLOBAL ID
202101019944115931
researchmap会員ID
R000018454

主要な研究キーワード

 2

論文

 81
  • ANDO Masaki, KAWAMURA Seiji, SATO Shuichi, NAKAMURA Takashi, TSUBONO Kimio, ARAYA Akito, FUNAKI Ikkoh, IOKA Kunihito, KANDA Nobuyuki, MORIWAKI Shigenori, MUSHA Mitsuru, NAKAZAWA Kazuhiro, NUMATA Kenji, SAKAI Shin-ichiro, SETO Naoki, TAKASHIMA Takeshi, TANAKA Takahiro, DECIGO Working Group the
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 8(27) Po_4_1-Po_4_6 2010年  
    A space gravitational wave antenna, DECIGO (DECI-hertz interferometer Gravitational wave Observatory) will provide fruitful insights into the universe, particularly on dark energy, the formation mechanism of supermassive black holes, and the inflation of the universe. In the current pre-conceptual design, DECIGO will be comprised of 4 interferometer units; each interferometer unit will be realized by formation flight of three drag-free spacecraft with 1000 km separation. Since DECIGO will be an extremely challenging mission with high-precision formation flight, it is important to increase the technical feasibility before its planned launch in 2024. Thus, we are planning two milestone missions. DECIGO pathfinder (DPF) is the first milestone mission for DECIGO, and key components for DPF are being tested on ground and in orbit. In this article, we review the conceptual design and current status of DECIGO and DPF.
  • SAITO Hirobumi, SAKAI Shin-ichiro, HIGUCHI Ken, KISHIMOTO Naoko, TAKEUCHI Hiroshi, YOSHIHARA Keisuke, ASAKI Yoshiharu, TSUBOI Masato, MURATA Yasuhiro, KOBAYASHI Hideyuki
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 8(27) To_4_33-To_4_41 2010年  査読有り
    Space VLBI (very long baseline interferometry) mission, ASTRO-G, will be launched in 2013 by Japan Aerospace Exploration Agency (JAXA). ASTRO-G is a follow-on mission of HALCA (VSOP) mission in 1990s, which was the world first space VLBI mission. ASTRO-G will consists of a huge synthetic aperture with diameter of 35,000 Km together with radio antennas in the ground. They will achieve the world highest angular resolution imaging by means of 43 GHz observation. This paper describes the advanced key technologies of ASTRO-G such as the 9 m deployable antenna with very accurate surface, the fast rest - to - rest attitude maneuver, and the precision orbit determination above NAVSTAR's orbits. These advance technologies lead ASTRO-G mission to the astronomical observation with the world highest angular resolution.
  • Peter J. Buist, Sandra Verhagen, Tatsuaki Hashimoto, Shujiro Sawai, Shin-ichiro Sakai, Nobutaka Bando, Shigehito Shimizu
    2010 IEEE-ION POSITION LOCATION AND NAVIGATION SYMPOSIUM PLANS 1287-1294 2010年  査読有り
    JAXA has been developing a system to provide a long duration, good quality microgravity environment based on a capsule, named the Balloon-based Operation Vehicle, that can be released from a balloon. In this paper we will describe the Balloon-based operation vehicle itself and the experiments using GPS performed - in cooperation with Delft University of Technology - on the gondola of the balloon in 2008 (single baseline estimation) and 2009 (full attitude determination and relative positioning). The attitude calculated using raw observations from a GPS receiver during the 2009 experiment is compared with Sun Aspect Sensors' and Geomagnetic Aspect Sensor's results and moreover with the attitude as provided by the receiver itself.
  • Masaki Ando, Seiji Kawamura, Shuichi Sato, Takashi Nakamura, Kimio Tsubono, Akito Araya, Ikkoh Funaki, Kunihito Ioka, Nobuyuki Kanda, Shigenori Moriwaki, Mitsuru Musha, Kazuhiro Nakazawa, Kenji Numata, Shin-ichiro Sakai, Naoki Seto, Takeshi Takashima, Takahiro Tanaka, Kazuhiro Agatsuma, Koh-suke Aoyanagi, Koji Arai, Hideki Asada, Yoichi Aso, Takeshi Chiba, Toshikazu Ebisuzaki, Yumiko Ejiri, Motohiro Enoki, Yoshiharu Eriguchi, Masa-Katsu Fujimoto, Ryuichi Fujita, Mitsuhiro Fukushima, Toshifumi Futamase, Katsuhiko Ganzu, Tomohiro Harada, Tatsuaki Hashimoto, Kazuhiro Hayama, Wataru Hikida, Yoshiaki Himemoto, Hisashi Hirabayashi, Takashi Hiramatsu, Feng-Lei Hong, Hideyuki Horisawa, Mizuhiko Hosokawa, Kiyotomo Ichiki, Takeshi Ikegami, Kaiki T. Inoue, Koji Ishidoshiro, Hideki Ishihara, Takehiko Ishikawa, Hideharu Ishizaki, Hiroyuki Ito, Yousuke Itoh, Nobuki Kawashima, Fumiko Kawazoe, Naoko Kishimoto, Kenta Kiuchi, Shiho Kobayashi, Kazunori Kohri, Hiroyuki Koizumi, Yasufumi Kojima, Keiko Kokeyama, Wataru Kokuyama, Kei Kotake, Yoshihide Kozai, Hideaki Kudoh, Hiroo Kunimori, Hitoshi Kuninaka, Kazuaki Kuroda, Kei-ichi Maeda, Hideo Matsuhara, Yasushi Mino, Osamu Miyakawa, Shinji Miyoki, Mutsuko Y. Morimoto, Tomoko Morioka, Toshiyuki Morisawa, Shinji Mukohyama, Shigeo Nagano, Isao Naito, Kouji Nakamura, Hiroyuki Nakano, Kenichi Nakao, Shinichi Nakasuka, Yoshinori Nakayama, Erina Nishida, Kazutaka Nishiyama, Atsushi Nishizawa, Yoshito Niwa, Taiga Noumi, Yoshiyuki Obuchi, Masatake Ohashi, Naoko Ohishi, Masashi Ohkawa, Norio Okada, Kouji Onozato, Kenichi Oohara, Norichika Sago, Motoyuki Saijo, Masaaki Sakagami, Shihori Sakata, Misao Sasaki, Takashi Sato, Masaru Shibata, Hisaaki Shinkai, Kentaro Somiya, Hajime Sotani, Naoshi Sugiyama, Yudai Suwa, Rieko Suzuki, Hideyuki Tagoshi, Fuminobu Takahashi, Kakeru Takahashi, Keitaro Takahashi, Ryutaro Takahashi, Ryuichi Takahashi, Tadayuki Takahashi, Hirotaka Takahashi, Takamori Akiteru, Tadashi Takano, Keisuke Taniguchi, Atsushi Taruya, Hiroyuki Tashiro, Yasuo Torii, Morio Toyoshima, Shinji Tsujikawa, Yoshiki Tsunesada, Akitoshi Ueda, Ken-ichi Ueda, Masayoshi Utashima, Yaka Wakabayashi, Hiroshi Yamakawa, Kazuhiro Yamamoto, Toshitaka Yamazaki, Jun'ichi Yokoyama, Chul-Moon Yoo, Shijun Yoshida, Taizoh Yoshino
    CLASSICAL AND QUANTUM GRAVITY 26(9) 2009年5月  
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory), which is a future space gravitational wave antenna. DECIGO is expected to provide fruitful insights into the universe, particularly about dark energy, the formation mechanism of supermassive black holes and the inflation of the universe. Since DECIGO will be an extremely challenging mission, which will be formed by three drag-free spacecraft with 1000 km separation, it is important to increase the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. In this paper, we review the conceptual design and current status of the first milestone mission, DPF.
  • 橋本 樹明, 澤井 秀次郎, 坂井 真一郎, 坂東 信尚, 小林 弘明, 石川 毅彦, 稲富 裕光, 藤田 和央, 吉光 徹雄, 斎藤 芳隆, 福家 英之
    JASMA : Journal of the Japan Society of Microgravity Application 26(1) 9-14 2009年1月31日  
  • 澤井 秀次郎, 橋本 樹明, 坂井 真一郎, 坂東 信尚, 吉光 徹雄, 石川 毅彦, 稲富 裕光, 福家 英之, 鎌田 幸男, 長江 朋子, 小林 弘明, 藤田 和央, 小島 孝之, 上野 誠也, 宮路 幸二, 門岡 昇平, 平木 講儒, 鈴木 宏二郎, 上原 聡
    JASMA : Journal of the Japan Society of Microgravity Application 26(1) 21-28 2009年1月31日  
  • 福田 盛介, 水野 貴秀, 坂井 真一郎, 福島 洋介, 齋藤 宏文
    日本航空宇宙学会論文集 = Journal of the Japan Society for Aeronautical and Space Sciences 57(660) 25-31 2009年1月5日  
    REIMEI/INDEX (INnovative-technology Demonstration EXperiment) is a 70kg class small satellite which the Institute of Space and Astronautical Science, Japan Exploration Agency, ISAS/JAXA, has developed for observation of auroral small-scale dynamics as well as demonstration of advanced satellite technologies. An important engineering mission of REIMEI is integrated satellite control using commercial RISC CPUs with a triple voting system in order to ensure fault-tolerance against radiation hazards. Software modules concerning every satellite function, such as attitude control, data handling, and mission applications, work cooperatively so that highly sophisticated satellite control can be performed. In this paper, after a concept of the integrated satellite control is introduced, the Integrated Controller Unit (ICU) is described in detail. Also unique topics in developing the integrated control system are shown.
  • Takaaki TANAKA, Takashi KIDA, Tomoyuki NAGASHIO, Takashi OHTANI, Isao YAMAGUCHI, Tokio KASAI, Yoshiro HAMADA, Shin-ichiro SAKAI, Nobutaka BANDO
    Journal of Space Engineering 2(1) 12-24 2009年  
  • Tetsuo Yoshimitsu, Shujiro Sawai, Takahide Mizuno, Seisuke Fukuda, Nobutaka Bando, Shin'ichiro Sakai, Ken Higuchi, Tatsuaki Okada, Takashi Kubota, Daisuke Kobayashi, Ryoichiro Yasumitsu, Makoto Kunugi, Shoji Yoshikawa, Katsumi Furukawa, Tetsuya Matsuo
    60th International Astronautical Congress 2009, IAC 2009 2 1096-1100 2009年  査読有り
    After the success of remotely-sensed global observation by SELENE orbiter, Japan has been focusing on the in-situ exploration of the Moon. To know more about the Moon, numerous missions have to be launched to the Moon for surveying different interesting places. Naturally the cost of single mission must be reduced. Japan has been considering a landing mission for about ten years as a next mission to the Moon. This has a few tons of weight and costs a few million euros including the launch vehicle because it also features the future manned mission. Obviously it is not suitable for scientific in-situ exploration, which must be conducted repeatedly. The authors have been studying a small lander on the Moon or the planets in order to enable the multiple in-situ explorations cheaply. With the technologies developed in our studies, the mission named SLIM (Smart Lander for Investigating Moon) has been proposed to demonstrate an autonomous, accurate and soft landing on the specified place of the Moon. SLIM is also helpful to increase the success probability of the nation-led flagship landing mission when it is conducted as a precursor. This paper describes the proposed SLIM mission.
  • Tatsuaki Hashimoto, Shujiro Sawai, Shin'ichiro Sakai, Nobutaka Bando, Hiroaki Kobayashi, Kazuhisa Fujita, Yuko Inatomi, Takehiko Ishikawa, Tetsuo Yoshimitsu, Yoshitaka Saito
    Proc. 60th International Astronautical Congress 1 IAC-09.A2.5.3-730 2009年  査読有り
  • ISHIKAWA Takehiko, HASHIMOTO Tatsuaki, SAWAI Shujiro, SAITO Yoshitaka, INATOMI Yuko, YOSHIMITSU Tetsuo, SAKAI Shin'ichiro, KOBAYASHI Hiroaki, FUJITA Kazuhisa, BANDO Nobutaka
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, SPACE TECHNOLOGY JAPAN 7(26) Ph_29-Ph_33 2009年  
    The second flight of microgravity experiment system using a free fall capsule from a high altitude balloon was conducted in May 2007. Using a drag free control, around 10-4G gravity conditions were obtained for 30 seconds. Results of a combustion experiment with Japanese sparker conducted inside the microgravity experimental unit were also reported.
  • SAWAI Shujiro, FUJITA Kazuhisa, KOBAYASHI Hiroaki, SAKAI Shin'ichiro, BANDO Nobutaka, KADOOKA Shouhei, TSUBOI Nobuyuki, MIYAJI Koji, UCHIYAMA Taku, HASHIMOTO Tatsuaki
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, SPACE TECHNOLOGY JAPAN 7(26) Tg_27-Tg_34 2009年  
    JAXA is developing Mach 5 hypersonic turbojet engine technology that can be applied in a future hypersonic transport. Now, Jet Engine Technology Research Center of JAXA conducts the experimental study using a 1 / 10 scale-model engine. In parallel to engine development activities, a new supersonic flight-testing vehicle for the hypersonic turbojet engine is under development since 2004. In this paper, the system configuration of the flight-testing vehicle is outlined and development status is reported.
  • SAITO Hirobumi, SAWAI Syujiro, SAKAI Shin-ichiro, FUKUDA Seisuke, KITADE Kenji
    Acta Astronautica 65(9/10) 2009年  
  • 福田盛介, 澤井秀次郎, 坂井真一郎, 齋藤宏文, 遠間孝之, 高橋純子, 鳥海強, 北出賢二
    宇宙技術(Web) 8 2009年  
  • 石川 毅彦, 稲富 裕光, 橋本 樹明, 澤井 秀次郎, 斎藤 芳隆, 吉光 徹雄, 坂井 真一郎, 小林 弘明, 藤田 和央, 坂東 信尚, 後藤 雅享
    JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 25(1) 3-10 2008年1月31日  
  • Shin-Ichiro Sakai, Ryosuke Kaneda, Ken Maeda, Tetsu Saitoh, Hirobumi Saito, Tatsuaki Hashimoto
    European Space Agency, (Special Publication) ESA SP (654) 2008年  
    Electromagnetic formation flight (EMFF) for satellites in LEO is discussed. EMFF is a technique to control the satellites' relative position using electromagnetic force without any propellants. It is estimated that the superconductive magnets have capability to produce required magnetic force for formation keeping. The problem to use EMFF in LEO is the huge amount of disturbance torque, caused by enormous magnetic moment and earth magnetic field. Sinusoidal driving of the superconductive coil is proposed for this issue, and novel method is also proposed for magnetic force control using phase difference between the magnetic moments. Proposed methods are evaluated with experiments with actual superconductive coil, and hardware in the loop simulations is also carried out to demonstrate the relative position control capability of proposed system.
  • 金田良介, 坂井真一郎, 橋本樹明, 齋藤宏文
    日本航空宇宙学会論文集 56(652) 203-210 (J-STAGE)-210 2008年  査読有り
    For astronomical observing missions by formation flying satellites in LEO, satellites require control force to keep the relative position, against Keplerian orbit in an inertia coordinate frame. Since satellites require propulsion systems, i.e. thrusters, but the use of thrusters limits the mission lifetime associated with the finite fuel supply. Thus the authors propose the formation flight using electromagnetic force. In this method, the electromagnetic force between super-conducting magnets are used for the relative position control. This method has the obvious advantage of no-fuel to acquire control force. Since such large magnetic moment in earth magnetism generates large disturbance torque, the magnetic moments should be sinusoidal with shorter period than that of the orbit period. Therefore, this paper proposes the relative position control by changing the phase difference between sinusoidal magnetic moments. The proposed method was evaluated with numerical simulations and the results shows the feasibility of the proposed formation flight.
  • 澤井秀次郎, 橋本樹明, 坂井真一郎, 坂東信尚, 小林弘明, 藤田和央, 吉光徹雄, 石川毅彦, 稲富裕光, 福家英之, 鎌田幸男, 星野慎二, 田島賢一, 門岡昇平, 上原聡, 小島孝之, 上野誠也, 宮路幸二, 坪井伸幸, 平木講儒, 鈴木宏二郎, 松嶋清穂, 中田孝
    日本航空宇宙学会論文集 56(654) 2008年  
  • Inatomi Yuko, Ishikawa Takehiko, Hashimoto Tatsuaki, SAWAI Shujiro, SAITO Yoshitaka, YOSHIMITSU Tetsuo, SAKAI Shin-ichiro, KOBAYASHI Hiroaki, FUJITA Kazuo, BANDO Nobutaka, GOTO Masayuki, JIMBO Itaru, YAMAKAWA Hiroshi
    JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 24(3) 296-300 2007年7月30日  
  • Hirobumi Saito, Takahide Mizuno, Koji Tanaka, Yoshitsugu Sone, Seisuke Fukuda, Shin-Ichiro Sakai, Nobukatsu Okuizumi, Makoto Mita, Yosuke Fukushima, Masatoshi Uno, Yoshimitsu Yanagawa, Takuya Takahara, Ryosuke Kaneda, Takashi Honma, Masafumi Hirahara, Kazushi Asamura, Takeshi Sakanoi, Akira Miura, Toshinori Ikenaga, Horiyuki Nagamatsu, Keita Ogawa, Yasunari Masumoto
    International Astronautical Federation - 58th International Astronautical Congress 2007 6 3668-3678 2007年  
    This paper describes the on-orbit results and lessons-learned of the small scientific satellite "INDEX" (REIMEI) for aurora observation and demonstration of advanced satellite technologies. INDEX is a small satellite with 72kg mass, and is provided with three-axis attitude controll capabilities for aurora observation. INDEX was launched into a nearly sun synchronous polar orbit on Aug. 23rd, 2005 (UT) from Baikonur, Kazakhstan by Dnepr rocket. INDEX satellite has been satisfactorily working on the orbit for 24 months at present of August,2007. Three axis control is achieved with accuracy of 0.1 deg(3 σ). Multi-spectrum images of aurora are taken with 8Hz rate and 2 km spatial resolution to investigate the aurora physics. INDEX is performing the simultaneous observation of aurora images and particle measurements. INDEX indicates that even a small satellite launched as a piggy-back can successfully perform unique scientific mission purposes. Copyright IAF/IAA. All rights reserved.
  • Nobutaka Bando, Ken-Ichi Tajima, Shin-Ichiro Sakai, Yuko Inatomi, Takehiko Ishikawa, Hiroaki Kobayashi, Kazuhisa Fujita, Hideyuki Fuke, Shujiro Sawai, Tatsuaki Hashimoto
    International Astronautical Federation - 58th International Astronautical Congress 2007 1 495-500 2007年  
    This paper proposes a new micro gravity experimental system called BOV (Balloon-based Operation Vehicle). BOV uses a free-fall capsule with double-shell structure to prevent influence of aerodynamic disturbance. Additionally, BOV is raised to 40km by a high altitude balloon to extend micro gravity duration to 30(or possibly 60) seconds. Thus we realize a medium duration micro gravity system with good micro gravity environment. In this system, the most characteristic point is double-shell structure. The inner shell can fall freely since the outer shell measures the relative position with laser displacement sensors and is controlled by gas-jet thrusters not to collide the inner shell. Therefore the inner shell can be uninfluenced of the dynamic pressure and other aerodynamic disturbances ideally. The BOVs project has run since 2004. The first flight to check the whole system was accomplished in 2006. The aim of this flight was test of a high altitude balloon, communication and data handling system, control system, onboard electronics and operation. The second flight expected to achieve 30 seconds micro gravity was also accomplished on May in 2007. This paper presents the development of BOV's control system and shows the experimental results of micro gravity and consideration for effectiveness of the proposed system. Copyright 2007 by the IAF or the IAA. All rights reserved.
  • Maeda K, Tohma T, Saitoh T, Hara Y, Mitsuda K, Dotani T, Maeda Y, Ishida M, Kokubun M, Kunieda H, Hashimoto T, Sakai S
    Proceedings of the SICE Annual Conference 3019-3024 2007年  査読有り
  • 稲富 裕光, 石川 毅彦, 橋本 樹明, 澤井 秀次郎, 斉藤 芳隆, 吉光 徹雄, 坂井 真一郎, 小林 弘明, 藤田 和央, 坂東 信尚, 後藤 雅享, 神保 至, 山川 宏
    JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 23(4) 197-203 2006年11月30日  
  • 稲富 裕光, 神保 至, 石川 毅彦, 橋本 樹明, 澤井 秀次郎, 斉藤 芳隆, 吉光 徹雄, 坂井 真一郎, 小林 弘明, 藤田 和央, 坂東 信尚, 後藤 雅享, 山川 宏
    JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 23(4) 280-280 2006年11月30日  
  • Seisuke Fukuda, Shin-ichiro Sakai, Yousuke Fukushima, Kazushi Asamura, Takahide Mizuno, Hirobumi Saito, Takuya Takahara, Ryosuke Kaneda, Yoshimitsu Yanagawa
    SpaceOps 2006 Conference 2006年  
    REIMEI (INDEX) is a small scientific satellite for aurora observation and demonstration of advanced satellite technologies. The satellite is designed based on an integrated computer system. In this paper, flexible operation systems, which use the integrated computing to advantage, are described. The dedicated ground station at the ISAS/JAXA campus is also introduced. © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
  • Ryosuke Kanada, Shin-Ichiro Sakai, Tatsuaki Hashimoto, Hirobumi Saito
    Advances in the Astronautical Sciences 124 381-394 2006年  
    Formation flying satellites using electromagnetic force generated by super-conducting magnets (SCM)123 have been proposed against the mission lifetime restriction associsated with the finite fuel supply caused by the use of thrusters. Electromagnetic force are generated by electric power, which is supplied through solar array paddles in satellite-system, therefore, mission lifetime is unlimited by the fuel supply. For such formation flights in LEO, the authors have proposed the relative position control method based on the phase difference in coil currents, because coil's currents should be sinusoidal in order to avoid disturbance torque by the earthmagnetism. The effectiveness is shown in numerical simulations with the relative position controller already designed.4 But it is assumed that the phase of sinusoidal current can be shifted freely. This paper refers to the practical method for shifting the phase of sinusoidal currents. The electric circuit, phase-shifting circuit (PSC), to achieve this aim was proposed and the performance was confirmed with numerical simulations. And the relative position control including the physical model of PSC was evaluated with simulations. Moreover, some experiments for verification of PSC's performance were carried out.
  • Toshio Kamiya, Ken Maeda, Naoto Ogura, Tatsuaki Hashimoto, Shin-Ichiro Sakai, Yasuhiro Murata, Nanako Mochizuki
    Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2006 2 948-956 2006年  
    A new feedforward algorithm for flexible spacecraft maneuvers is presented. This algorithm is designed particularly for single-axis rest-to-rest rotational maneuvers (switching maneuvers) with linear actuators. Generally spacecraft with large flexible structure has a lot of large-mass flexible-modes. Therefore, uncertainty of high-order modes needs to be taken into consideration for high-accuracy controller design of large flexible spacecraft. Most researcher propose algorithms of which target flexible-modes are finite number and narrow tolerances, so control errors are inevitable if applied to a large flexible satellite. This paper presents an extra-insensitive maneuvering method which overcomes above-mentioned difficulties. Angular acceleration profile which has a shaped frequency characteristic is computed from 'desired maneuver angle' and 'desired maneuver time' by the algorithm. This algorithm includes a preshaping profiler formulated from sampling function (also known as sinc function), consequently feedforward control inputs generated from the preshaping profiler have no frequency response above a certain designed frequency. Therefore residual vibration at the end-point of maneuver can be highly reduced with minimum loss of maneuver agility. Feedforward control inputs generated from this preshaping profiler have a continuous waveform, so this algorithm is suitable for use of linear actuators as control actuators. Flexible spacecraft dynamics model of VSOP2 including 2-CMGs and 4-RWs is used to evaluate the proposed algorithm. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
  • 稲富 裕光, 坂東 信尚, 澤井 秀次郎, 石川 毅彦, 坂井 真一郎, 吉光 徹雄, 斎藤 芳隆, 山川 宏, 橋本 樹明
    JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 22(4) 317-317 2005年11月28日  
  • Hirobumi Saito, Takahide Mizuno, Koji Tanaka, Yoshitsugu Sone, Seisuke Fukuda, Shin-Ichiro Sakai, Nobukatsu Okuizumi, Makoto Mita, Yosuke Fukushima, Masafumi Hirahara, Kazushi Asamura, Takeshi Sakanoi, Akira Miura, Toshinori Ikenaga, Yasunari Masumoto
    International Astronautical Federation - 56th International Astronautical Congress 2005 4 2379-2394 2005年  
    This paper describes the initial on-orbit results of the small scientific satellite "INDEX" (REIMEI) for aurora observation and demonstration of advanced satellite technologies. REIMEI is a small satellite with 72kg mass, and is provided with three-axis attitude controlled capabilities for aurora observation. REIMEI was launched into a nearly sun synchronous polar orbit on Aug. 23rd, 2005 (UT) from Baikonur, Kazakhstan by Dnepr rocket. After REIMEI was separated from the Dnepr rocket, REIMEI successfully performed a sun-pointing acquisition with spinning motion. A week later REIMEI switched into three-axis attitude control mode. REIMEI satellite functions works satisfactorily in the orbit. The first imaging observations of aurora were successfully performed above the southern polar region in Sep. 16th, 2005. Multi-spectrum images of aurora were taken with 8Hz rate and 2 km spatial resolution.
  • 坂井 真一郎, 福島 洋介, 本間 貴之, 金田 良介, 長尾 剛司
    電子情報通信学会論文誌. B, 通信 = The transactions of the Institute of Electronics, Information and Communication Engineers. B 88(1) 69-78 2005年1月1日  
    2004年打上げ予定の小型科学衛星"INDEX"は,60[kg]の小型衛星でありながら高精度の姿勢制御を行ってオーロラ観測を行う科学衛星である.重量及びコストの点でハードウェアの制約を受ける中で,高精度な姿勢制御性能を実現するために様々な工夫を施している.本論文ではこのうち,センサ性能を十分に考慮した姿勢制御系の設計手法,また光学センサの触を避けるための衛星運用方式とその評価などについて述べる.更に,効率的に試験・開発を進めるための柔軟なテレメトリコマンドシステムについても紹介する.
  • 橋本 樹明, 斎藤 芳隆, 稲富 裕光, 石川 毅彦, 澤井 秀次郎, 山川 宏, 吉光 徹雄, 坂井 真一郎
    JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 21 66-66 2004年11月4日  

MISC

 18

主要な講演・口頭発表等

 229

共同研究・競争的資金等の研究課題

 5