惑星分光観測衛星プロジェクトチーム
基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 日本学術振興会特別研究員(Post Doctoral Research Fellow)
- 学位
- 博士(理学)(2021年3月 大阪大学)修士(理学)(2019年3月 大阪大学)
- ORCID ID
https://orcid.org/0000-0001-9818-1513- J-GLOBAL ID
- 202201001270830215
- researchmap会員ID
- R000045405
- 外部リンク
経歴
3-
2022年10月 - 2025年3月
-
2021年4月 - 2022年9月
学歴
3-
2019年4月 - 2021年3月
-
2017年4月 - 2019年3月
-
2013年4月 - 2017年3月
論文
111-
The Astrophysical Journal 2025年12月We introduce microJAX, the first fully differentiable implementation of the image-centered ray shooting algorithm for gravitational microlensing. Built on JAX and its XLA just-in-time compiler, microJAX exploits GPU parallelism while providing exact gradients through automatic differentiation. The current release supports binary- and triple-lens geometries, including limb-darkened extended-source effects, and delivers magnifications that remain differentiable for all model parameters. Benchmarks show that microJAX matches the accuracy of established packages and attains up to a factor of ∼5─6 speedup in the small-source, limb-darkened regime on an NVIDIA A100 GPU. Since the model is fully differentiable, it integrates seamlessly with probabilistic programming frameworks, enabling scalable Hamiltonian Monte Carlo and variational inference workflows. Although the present work focuses on standard microlensing magnification models, the modular architecture is designed to support upcoming implementations of microlensing higher-order effects, while remaining compatible with external likelihood frameworks that incorporate advanced noise models. microJAX thus provides a robust foundation for precise and large-scale surveys anticipated in the coming decade, including the Nancy Grace Roman Space Telescope, where scalable, physically self-consistent inference will be essential for maximizing scientific return....
-
The Astronomical Journal 2025年12月We present the description of the instruments and the first results of the PRime-focus Infrared Microlensing Experiment (PRIME). PRIME is the first dedicated near-infrared (NIR) microlensing survey telescope located at the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Among its class, it offers one of the widest fields of view in the NIR regime. PRIME's main goals are (1) To study planetary formation by measuring the frequency and mass function of planets. In particular, we compare results from the central Galactic bulge (GB), accessible only in the NIR by PRIME, with those from the outer GB by optical surveys. (2) To conduct concurrent observations with NASA's Nancy Grace Roman Space telescope. Due to the different lines of sight between the ground and space, we detect slight variations in light curves, known as ``Space-based parallax." This effect allows us to measure the mass of lens systems and their distance from the Earth. It is the only method to measure the mass of the free-floating planets down to Earth-mass. We begin the GB survey in February 2024 and analyzed images through June 1, 2025, identifying 486 microlensing candidates and over a thousand variable stars, including Mira variables, which are useful to study the Galactic structure. We issue real-time alerts for follow-up observations, supporting exoplanet searches, and the chemical evolution studies in the GB. During the off-bulge season, we conduct an all-sky grid survey and Target of Opportunity (ToO) observations of transients, including gravitational wave events, gamma-ray bursts, and other science....
-
The Astrophysical Journal 2025年12月1日We introduce microJAX, the first fully differentiable implementation of the image-centered ray-shooting (ICRS) algorithm for gravitational microlensing. Built on JAX and its XLA just-in-time compiler, microJAX exploits GPU parallelism while providing exact gradients through automatic differentiation. The current release supports binary- and triple-lens geometries, including limb-darkened extended-source effects, and delivers magnifications that remain differentiable for all model parameters. Benchmarks show that microJAX matches the accuracy of established packages and attains up to a factor of $\sim$5-6 speed-up in the small-source, limb-darkened regime on an NVIDIA A100 GPU. Since the model is fully differentiable, it integrates seamlessly with probabilistic programming frameworks, enabling scalable Hamiltonian Monte Carlo and variational inference workflows. Although the present work focuses on standard microlensing magnification models, the modular architecture is designed to support upcoming implementations of microlensing higher-order effects, while remaining compatible with external likelihood frameworks that incorporate advanced noise models. microJAX thus provides a robust foundation for precise and large-scale surveys anticipated in the coming decade, including the Nancy Grace Roman Space Telescope, where scalable, physically self-consistent inference will be essential for maximizing scientific return....
-
2025年11月Microlensing campaigns have a long history of observations covering the Galactic bulge, where thousands of detections have been obtained, including many exoplanetary systems. The Euclid Galactic Bulge Survey represents a unique opportunity to revisit a large number of past events and attempt the lens-source resolution of known events falling in the covered area. As the analysis of individual events requires non-negligible efforts, it is important to establish priorities among all possible targets, identifying those candidates with the higher chance for a successful resolution of the lens from the source and with the highest scientific interest. Drawing from the databases of the three main microlensing surveys (OGLE, MOA and KMTNet), we compile the complete catalog of past microlensing events in the Euclid survey footprint up to year 2023, containing 8081 entries. By re-modeling all events and cross-checking with Galactic models, we estimate the relative lens-source proper motions for all events. Taking into account all uncertainties, for each microlensing event we are able to estimate the probability that the lens is separated from the source by more than a given angular distance threshold. Hence, we rank all events by their resolution probability, providing additional useful information that will guide future analyses on the most promising candidates. A particular attention is dedicated to known planetary microlensing events....
-
Astronomy and Astrophysics 2025年10月Aims. We investigated binary-lens events from the 2022–2024 microlensing surveys, aiming to identify events suitable for lens mass measurements. We focused on two key light curve features: distinct caustic spikes with resolved crossings for measuring the angular Einstein radius (θE), and long durations enabling microlens-parallax (πE) measurements. Four events met these criteria: KMT-2022-BLG-1479, KMT-2023-BLG-0932, OGLE-2024-BLG-0142, and KMT-2024-BLG-1309. Methods. We estimated the angular Einstein radius by combining the normalized source radius measured by modeling the resolved caustic spikes with the angular source radius derived from the source color and magnitude. Additionally, we determined the microlens parallax through light curve modeling, taking higher-order effects caused by the orbital motions of Earth and the binary lens into consideration. Results. With measurements of the event timescale, angular Einstein radius, and microlens parallax, we uniquely determined the mass and distance of the lens. For the events KMT-2022-BLG-1479, KMT-2023-BLG-0932, and KMT-2024-BLG-1309, both components of the binary lens have masses lower than that of the Sun, consistent with M-type dwarfs, which are the most common type of lenses in Galactic microlensing events. These lenses are relatively nearby, with distances of ≲2.5 kpc, indicating their location within the Galactic disk. In contrast, for OGLE-2024-BLG-0142, the primary lens component has a mass similar to that of the Sun, while the companion lens component has about half the mass of the primary. This lens system is situated at a greater distance, roughly 4.5 kpc....
共同研究・競争的資金等の研究課題
6-
日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月
-
日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月
-
日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月
-
日本学術振興会 科学研究費助成事業 2023年9月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 2023年8月 - 2025年3月
メディア報道
1-
https://www.nasa.gov/feature/goddard/2021/nasa-s-roman-mission-will-probe-galaxy-s-core-for-hot-jupiters-brown-dwarfs 2021年1月 インターネットメディア