Dept. of Space Astronomy and Astrophysics

宮﨑 翔太

ミヤザキ ショウタ  (Shota Miyazaki)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙航空プロジェクト研究員
学位
博士(理学)(2021年3月 大阪大学)
修士(理学)(2019年3月 大阪大学)

ORCID ID
 https://orcid.org/0000-0001-9818-1513
J-GLOBAL ID
202201001270830215
researchmap会員ID
R000045405

外部リンク

論文

 61
  • Kruszyńska, K., Wyrzykowski, Ł., Rybicki, K. A., Howil, K., Jabłońska, M., Kaczmarek, Z., Ihanec, N., Maskoliūnas, M., Bronikowski, M., Pylypenko, U., Udalski, A., Mróz, P., Poleski, R., Skowron, J., Szymański, M. K., Soszyński, I., Pietrukowicz, P., Kozłowski, S., Ulaczyk, K., Iwanek, P., Wrona, M., Gromadzki, M., Mróz, M. J., Abe, F., Bando, K., Barry, R., Bennett, D. P., Bhattacharya, A., Bond, I. A., Fukui, A., Hamada, R., Hamada, S., Hamasaki, N., Hirao, Y., Ishitani Silva, S., Itow, Y., Koshimoto, N., Matsubara, Y., Miyazaki, S., Muraki, Y., Nagai, T., Nunota, K., Olmschenk, G., Ranc, C., Rattenbury, N. J., Satoh, Y., Sumi, T., Suzuki, D., Tristram, P. J., Vandorou, A., Yama, H.
    Astronomy and Astrophysics 2024年12月  
    Gravitational microlensing is a phenomenon that allows us to observe the dark remnants of stellar evolution, even if these bodies are no longer emitting electromagnetic radiation. In particular, it can be useful to observe solitary neutron stars or stellar-mass black holes, providing a unique window through which to understand stellar evolution. Obtaining direct mass measurements with this technique requires precise observations of both the change in brightness and the position of the microlensed star. The European Space Agency's Gaia satellite can provide both. Using publicly available data from different surveys, we analysed events published in the Gaia Data Release 3 (Gaia DR3) microlensing catalogue. Here, we describe our selection of candidate dark lenses, where we suspect the lens is a white dwarf (WD), a neutron star (NS), a black hole (BH), or a mass-gap object, with a mass in the range between the heaviest NS and the least massive BH. We estimated the mass of the lenses using information obtained from the best-fitting microlensing models, source star, Galactic model, and the expected parameter distributions. We found eleven candidates for dark remnants: one WDs, three NSs, three mass-gap objects, and four BHs....
  • Han, Cheongho, Udalski, Andrzej, Bond, Ian A., Lee, Chung-Uk, Gould, Andrew, Albrow, Michael D., Chung, Sun-Ju, Hwang, Kyu-Ha, Jung, Youn Kil, Ryu, Yoon-Hyun, Shvartzvald, Yossi, Shin, In-Gu, Yee, Jennifer C., Yang, Hongjing, Zang, Weicheng, Cha, Sang-Mok, Kim, Doeon, Kim, Dong-Jin, Kim, Seung-Lee, Lee, Dong-Joo, Lee, Yongseok, Park, Byeong-Gon, Pogge, Richard W., Mróz, Przemek, Szymański, Michał K., Skowron, Jan, Poleski, Radosław, Soszyński, Igor, Pietrukowicz, Paweł, Kozłowski, Szymon, Rybicki, Krzysztof A., Iwanek, Patryk, Ulaczyk, Krzysztof, Wrona, Marcin, Gromadzki, Mariusz, Mróz, Mateusz J., Abe, Fumio, Barry, Richard, Bennett, David P., Bhattacharya, Aparna, Fujii, Hirosame, Fukui, Akihiko, Hamada, Ryusei, Hirao, Yuki, Silva, Stela Ishitani, Itow, Yoshitaka, Kirikawa, Rintaro, Koshimoto, Naoki, Matsubara, Yutaka, Miyazaki, Shota, Muraki, Yasushi, Olmschenk, Greg, Ranc, Clément, Rattenbury, Nicholas J., Satoh, Yuki, Sumi, Takahiro, Suzuki, Daisuke, Tomoyoshi, Mio, Tristram, Paul J., Vandorou, Aikaterini, Yama, Hibiki, Yamashita, Kansuke
    Astronomy and Astrophysics 2024年12月  
    Aims. We carried out a project involving the systematic analysis of microlensing data from the Korea Microlensing Telescope Network survey. The aim of this project is to identify lensing events with complex anomaly features that are difficult to explain using standard binary-lens or binary-source models. Methods. Our investigation reveals that the light curves of microlensing events KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024-BLG-0412 display highly complex patterns with three or more anomaly features. These features cannot be adequately explained by a binary-lens (2L1S) model alone. However, the 2L1S model can effectively describe certain segments of the light curve. By incorporating an additional source into the modeling, we identified a comprehensive model that accounts for all the observed anomaly features. Results. Bayesian analysis, based on constraints provided by lensing observables, indicates that the lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are binary systems composed of M dwarfs. For KMT-2022-BLG-2480, the primary lens is an early K-type main-sequence star with an M dwarf companion. The lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are likely located in the bulge, whereas the lens of KMT-2022-BLG-2480 is more likely situated in the disk. In all events, the binary stars of the sources have similar magnitudes due to a detection bias favoring binary source events with a relatively bright secondary source star, which increases detection efficiency....
  • In-Gu Shin, Jennifer C. Yee, Weicheng Zang, Cheongho Han, Hongjing Yang, Andrew Gould, Chung-Uk Lee, Andrzej Udalski, Takahiro Sumi, Michael D. Albrow, Sun-Ju Chung, Kyu-Ha Hwang, Youn Kil Jung, Yoon-Hyun Ryu, Yossi Shvartzvald, Sang-Mok Cha, Dong-Jin Kim, Hyoun-Woo Kim, Seung-Lee Kim, Dong-Joo Lee, Yongseok Lee, Byeong-Gon Park, Richard W. Pogge, Przemek Mróz, Michał K. Szymański, Jan Skowron, Radosław Poleski, Igor Soszyński, Paweł Pietrukowicz, Szymon Kozłowski, Krzysztof A. Rybicki, Patryk Iwanek, Krzysztof Ulaczyk, Marcin Wrona, Mariusz Gromadzki, Fumio Abe, Ken Bando, Richard Barry, David P. Bennett, Aparna Bhattacharya, Ian A. Bond, Hirosane Fujii, Akihiko Fukui, Ryusei Hamada, Shunya Hamada, Naoto Hamasaki, Yuki Hirao, Stela Ishitani Silva, Yoshitaka Itow, Rintaro Kirikawa, Naoki Koshimoto, Yutaka Matsubara, Shota Miyazaki, Yasushi Muraki, Tutumi Nagai, Kansuke Nunota, Greg Olmschenk, Clément Ranc, Nicholas J. Rattenbury, Yuki Satoh, Daisuke Suzuki, Mio Tomoyoshi, Paul. J. Tristram, Aikaterini Vandorou, Hibiki Yama, Kansuke Yamashita
    The Astronomical Journal 167(6) 269-269 2024年5月16日  
    Abstract Following Shin et al. (2023b), which is a part of the “Systematic KMTNet Planetary Anomaly Search” series (i.e., a search for planets in the 2016 KMTNet prime fields), we conduct a systematic search of the 2016 KMTNet subprime fields using a semi-machine-based algorithm to identify hidden anomalous events missed by the conventional by-eye search. We find four new planets and seven planet candidates that were buried in the KMTNet archive. The new planets are OGLE-2016-BLG-1598Lb, OGLE-2016-BLG-1800Lb, MOA-2016-BLG-526Lb, and KMT-2016-BLG-2321Lb, which show typical properties of microlensing planets, i.e., giant planets orbit M-dwarf host stars beyond their snow lines. For the planet candidates, we find planet/binary or 2L1S/1L2S degeneracies, which are an obstacle to firmly claiming planet detections. By combining the results of Shin et al. (2023b) and this work, we find a total of nine hidden planets, which is about half the number of planets discovered by eye in 2016. With this work, we have met the goal of the systematic search series for 2016, which is to build a complete microlensing planet sample. We also show that our systematic searches significantly contribute to completing the planet sample, especially for planet/host mass ratios smaller than 10−3, which were incomplete in previous by-eye searches of the KMTNet archive.
  • Aislyn Bell, Jiyuan Zhang, Weicheng Zang, Youn Kil Jung, Jennifer C. Yee, Hongjing Yang, Takahiro Sumi, Andrzej Udalski, Michael D. Albrow, Sun-Ju Chung, Andrew Gould, Cheongho Han, Kyu-Ha Hwang, Yoon-Hyun Ryu, In-Gu Shin, Yossi Shvartzvald, Sang-Mok Cha, Dong-Jin Kim, Seung-Lee Kim, Chung-Uk Lee, Dong-Joo Lee, Yongseok Lee, Byeong-Gon Park, Richard W. Pogge, Yunyi Tang, Jennie McCormick, Subo Dong, Zhuokai Liu, Leandro de Almeida, Shude Mao, Dan Maoz, Wei Zhu, Fumio Abe, Richard Barry, David P. Bennett, Aparna Bhattacharya, Ian A. Bond, Hirosane Fujii, Akihiko Fukui, Ryusei Hamada, Yuki Hirao, Stela Ishitani Silva, Yoshitaka Itow, Rintaro Kirikawa, Iona Kondo, Naoki Koshimoto, Yutaka Matsubara, Sho Matsumoto, Shota Miyazaki, Yasushi Muraki, Arisa Okamura, Greg Lmschenk, Clément Ranc, Nicholas J. Rattenbury, Yuki Satoh, Daisuke Suzuki, Taiga Toda, Mio Tomoyoshi, Paul J. Tristram, Aikaterini Vandorou, Hibiki Yama, Kansuke Yamashita, Przemek Mróz, Jan Skowron, Radoslaw Poleski, Michał K. Szymański, Igor Soszyński, Paweł Pietrukowicz, Szymon Kozłowski, Krzysztof Ulaczyk, Krzysztof A. Rybicki, Patryk Iwanek, Marcin Wrona, Mariusz Gromadzki
    Publications of the Astronomical Society of the Pacific 136(5) 054402-054402 2024年5月1日  
    Abstract The current studies of microlensing planets are limited by small number statistics. Follow-up observations of high-magnification microlensing events can efficiently form a statistical planetary sample. Since 2020, the Korea Microlensing Telescope Network (KMTNet) and the Las Cumbres Observatory (LCO) global network have been conducting a follow-up program for high-magnification KMTNet events. Here, we report the detection and analysis of a microlensing planetary event, KMT-2023-BLG-1431, for which the subtle (0.05 mag) and short-lived (5 hr) planetary signature was characterized by the follow-up from KMTNet and LCO. A binary-lens single-source (2L1S) analysis reveals a planet/host mass ratio of q = (0.72 ± 0.07) × 10−4, and the single-lens binary-source (1L2S) model is excluded by Δχ 2 = 80. A Bayesian analysis using a Galactic model yields estimates of the host star mass of , the planetary mass of , and the lens distance of kpc. The projected planet-host separation of au or au, subject to the close/wide degeneracy. We also find that without the follow-up data, the survey-only data cannot break the degeneracy of central/resonant caustics and the degeneracy of 2L1S/1L2S models, showing the importance of follow-up observations for current microlensing surveys.
  • Kirikawa, Rintaro, Sumi, Takahiro, Bennett, David P., Suzuki, Daisuke, Koshimoto, Naoki, Miyazaki, Shota, Bond, Ian A., Udalski, Andrzej, Rattenbury, Nicholas J., Abe, Fumio, Barry, Richard, Bhattacharya, Aparna, Fujii, Hirosane, Fukui, Akihiko, Hamada, Ryusei, Hirao, Yuki, Ishitani Silva, Stela, Itow, Yoshitaka, Matsubara, Yutaka, Muraki, Yasushi, Olmschenk, Greg, Ranc, Clément, Satoh, Yuki K., Tomoyoshi, Mio, Tristram, Paul. J., Vandorou, Aikaterini, Yama, Hibiki, Yamashita, Kansuke, MOA Collaboration, Mróz, Przemek, Poleski, Radosław, Skowron, Jan, Szymański, Michał K., Soszyński, Igor, Pietrukowicz, Paweł, Kozłowski, Szymon, Ulaczyk, Krzysztof, Mróz, Mateusz J., OGLE Collaboration
    The Astronomical Journal 2024年4月1日  
    We present the analysis of the microlensing event OGLE-2014-BLG-0221, a planetary candidate event discovered in 2014. The photometric light curve is best described by a binary-lens single-source model. Our light-curve modeling finds two degenerate models, with event timescales of t E ∼ 70 days and ∼110 days. These timescales are relatively long, indicating that the discovered system would possess a substantial mass. The two models are similar in their planetary parameters with a Jupiter mass ratio of q ∼ 10‑3 and a separation of s ∼ 1.1. Bayesian inference is used to estimate the physical parameters of the lens, revealing that the shorter timescale model predicts 65% and 25% probabilities of a late-type star and white dwarf host, respectively, while the longer timescale model favors a black hole host with a probability ranging from 60% to 95%, under the assumption that stars and stellar remnants have equal probabilities of hosting companions with planetary mass ratios. If the lens is a remnant, this would be the second planet found by microlensing around a stellar remnant. The current separation between the source and lens stars is 41–139 mas depending on the models. This indicates the event is now ready for high-angular-resolution follow-up observations to rule out either of the models. If precise astrometric measurements are conducted in multiple bands, the centroid shift due to the color difference between the source and lens would be detected in the luminous lens scenario....

MISC

 22
  • Youn Kil Jung, Andrew Gould, Andrzej Udalski, Takahiro Sumi, Jennifer C. Yee, Cheongho Han, Michael D. Albrow, Sun-Ju Chung, Kyu-Ha Hwang, Yoon-Hyun Ryu, In-Gu Shin, Yossi Shvartzvald, Wei Zhu, Weicheng Zang, Sang-Mok Cha, Dong-Jin Kim, Hyoun-Woo Kim, Seung-Lee Kim, Chung-Uk Lee, Dong-Joo Lee, Yongseok Lee, Byeong-Gon Park, Richard W. Pogge, Przemek Mróz, Michał K. Szymański, Jan Skowron, Radek Poleski, Igor Soszyński, Paweł Pietrukowicz, Szymon Kozłowski, Krzystof Ulaczyk, Krzysztof A. Rybicki, Patryk Iwanek, Marcin Wrona, Fumio Abe, Richard Barry, David P. Bennett, Ian A. Bond, Aparna Bhattacharya, Martin Donachie, Akihiko Fukui, Yuki Hirao, Yoshitaka Itow, Iona Kondo, Naoki Koshimoto, Man Cheung Alex Li, Yutaka Matsubara, Shota Miyazaki, Yasushi Muraki, Masayuki Nagakane, Clément Ranc, Nicholas~J. Rattenbury, Haruno Suematsu, Denis J. Sullivan, Daisuke Suzuki, Paul J. Tristram, Atsunori Yonehara
    The Astronomical Journal 160(3) 148-148 2020年6月29日  
    We report the discovery of a planet in the microlensing event OGLE-2018-BLG-1269, with planet-host mass ratio $q \sim 6\times10^{-4}$, i.e., $0.6$ times smaller than the Jupiter/Sun mass ratio. Combined with the $Gaia$ parallax and proper motion, a strong one-dimensional constraint on the microlens parallax vector allows us to significantly reduce the uncertainties of lens physical parameters. A Bayesian analysis that ignores any information about light from the host yields that the planet is a cold giant $(M_{2} = 0.69_{-0.22}^{+0.44}\,M_{\rm J})$ orbiting a Sun-like star $(M_{1} = 1.13_{-0.35}^{+0.72}\,M_{\odot})$ at a distance of $D_{\rm L} = 2.56_{-0.62}^{+0.92}\,{\rm kpc}$. The projected planet-host separation is $a_{\perp} = 4.61_{-1.17}^{+1.70}\,{\rm au}$. Using {\it Gaia} astrometry, we show that the blended light lies $\lesssim 12\,$mas from the host and therefore must be either the host star or a stellar companion to the host. An isochrone analysis favors the former possibility at $>99.6\%$. The host is therefore a subgiant. For host metallicities in the range of $0.0 \leq {\rm [Fe/H]} \leq +0.3$, the host and planet masses are then in the range of $1.16 \leq M_{1}/M_{\odot} \leq 1.38$ and $0.74 \leq M_{2}/M_{\rm J} \leq 0.89$, respectively. Low host metallicities are excluded. The brightness and proximity of the lens make the event a strong candidate for spectroscopic followup both to test the microlensing solution and to further characterize the system.
  • David P. Bennett, Andrzej Udalski, Ian A. Bond, Fumio Abe, Richard K. Barry, Aparna Bhattacharya, Martin Donachie, Hirosane Fujii, Akihiko Fukui, Yuki Hirao, Yoshitaka Itow, Kohei Kawasaki, Rintaro Kirikawa, Iona Kondo, Naoki Koshimoto, Man Cheung Alex Li, Yutaka Matsubara, Shota Miyazaki, Yasushi Muraki, Clément Ranc, Nicholas J. Rattenbury, Yuki Satoh, Hikaru Shoji, Takahiro Sumi, Daisuke Suzuki, Yuzuru Tanaka, Paul J. Tristram, Tsubasa Yamawaki, Atsunori Yonehara, Przemek Mroz, Radek Poleski, Michał K. Szymanski, Igor Soszynski, Łukasz Wyrzykowski, Krzysztof Ulaczyk
    The Astronomical Journal 160(2) 72-72 2020年5月14日  
    We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of $q_p = (1.26\pm 0.19) \times 10^{-3}$ to the primary. The mass ratio of the two stars is $q_s = 0.289\pm 0.011$, and their projected separation is $s_s = 2.1\pm 0.7\,$AU, while the projected separation of the planet from the primary is $s_p = 2.2\pm 0.8\,$AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of $M_{L1} = 0.35^{+0.30}_{-0.20}\,M_\odot$, $M_{L2} = 0.10^{+0.09}_{-0.06}\,M_\odot$, and $m_p = 144^{+126}_{-82}\,M_\oplus$, and the $K$-band magnitude of the combined brightness of the host stars is $K_L = 19.7^{+0.7}_{-1.0}$. The separation between the lens and source system will be $\sim 90\,$mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations.
  • Yuki Hirao, David P. Bennett, Yoon-Hyun Ryu, Naoki Koshimoto, Andrzej Udalski, Jennifer C. Yee, Takahiro Sumi, Ian A. Bond, Yossi Shvartzvald, Fumio Abe, Richard K. Barry, Aparna Bhattacharya, Martin Donachie, Akihiko Fukui, Yoshitaka Itow, Iona Kondo, Man Cheung Alex Li, Yutaka Matsubara, Taro Matsuo, Shota Miyazaki, Yasushi Muraki, Masayuki Nagakane, Clement Ranc, Nicholas J. Rattenbury, Haruno Suematsu, Hiroshi Shibai, Daisuke Suzuki, Paul J. Tristram, Atsunori Yonehara, J. Skowron, R. Poleski, P. Mroz, M. K. Szymanski, I. Soszynski, S. Kozlowski, P. Pietrukowicz, K. Ulaczyk, K. Rybicki, P. Iwanek, Michael D. Albrow, Sun-Ju Chung, Andrew Gould, Cheongho Han, Kyu-Ha Hwang, Youn Kil Jung, In-Gu Shin, Weicheng Zang, Sang-Mok Cha, Dong-Jin Kim, Hyoun-Woo Kim, Seung-Lee Kim, Chung-Uk Lee, Dong-Joo Lee, Yongseok Lee, Byeong-Gon Park, Richard W. Pogge, Charles A. Beichman, Geoffery Bryden, Sebastiano Calchi Novati, Sean Carey, B. Scott Gaudi, Calen B. Henderson, Wei Zhu, Etienne Bachelet, Greg Bolt, Grant Christie, Markus Hundertmark, Tim Natusch, Dan Maoz, Jennie McCormick, Rachel A. Street, Thiam-Guan Tan, Yiannis Tsapras, U. G. Jorgensen, M. Dominik, V. Bozza, J. Skottfelt, C. Snodgrass, S. Ciceri, R. Figuera Jaimes, D. F. Evans, N. Peixinho, T. C. Hinse, M. J. Burgdorf, J. Southworth, S. Rahvar, S. Sajadian, M. Rabus, C. von Essen, Y. I. Fujii, J. Campbell-White, S. Lowry, C. Helling, L. Mancini, L. Haikala, Ryo Kandori
    The Astronomical Journal 160(2) 74-74 2020年4月20日  
    We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the ${\it Spitzer}$ satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of $q=7.0 \times 10^{-4}$ from the light-curve modeling. The ground-only and ${\it Spitzer}$-"only" data each provide very strong one-dimensional (1-D) constraints on the 2-D microlens parallax vector $\bf{\pi_{\rm E } }$. When combined, these yield a precise measurement of $\bf{\pi_{\rm E } }$, and so of the masses of the host $M_{\rm host}=0.56\pm0.07\,M_\odot$ and planet $M_{\rm planet} = 0.41 \pm 0.05\,M_{\rm Jup}$. The system lies at a distance $D_{\rm L}=5.2 \pm 0.5 \ {\rm kpc}$ from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is $a_{\perp} = 3.5 \pm 0.3 \ {\rm au}$, i.e., just over twice the snow line. The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the ${\it Gaia}$ proper-motion measurement of the source suffers from a catastrophic $10\,\sigma$ error.
  • Cheongho Han, Doeon Kim, Youn Kil Jung, Andrew Gould, Ian A. Bond, Michael D. Albrow, Sun-Ju Chung, Kyu-Ha Hwang, Chung-Uk Lee, Yoon-Hyun Ryu, In-Gu Shin, Yossi Shvartzvald, Jennifer C. Yee, Weicheng Zang, Sang-Mok Cha, Dong-Jin Kim, Hyoun-Woo Kim, Seung-Lee Kim, Dong-Joo Lee, Yongseok Lee, Byeong-Gon Park, Richard W. Pogge, Woong-Tae Kim, Fumio Abe, Richard Barry, David P. Bennett, Aparna Bhattacharya, Martin Donachie, Hirosane Fujii, Akihiko Fukui, Yoshitaka Itow, Yuki Hirao, Rintaro Kirikawa, Iona Kondo, Naoki Koshimoto, Man Cheung Alex Li, Yutaka Matsubara, Yasushi Muraki, Shota Miyazaki, Masayuki Nagakane, Clément Ranc, Nicholas J. Rattenbury, Yuki Satoh, Hikaru Shoji, Haruno Suematsu, Takahiro Sumi, Daisuke Suzuki, Yuzuru Tanaka, Paul J. Tristram, Tsubasa Yamawaki, Atsunori Yonehara
    The Astronomical Journal 160(1) 17-17 2020年2月13日  
    We present the analysis of a very high-magnification ($A\sim 900$) microlensing event KMT-2019-BLG-1953. A single-lens single-source (1L1S) model appears to approximately delineate the observed light curve, but the residuals from the model exhibit small but obvious deviations in the peak region. A binary lens (2L1S) model with a mass ratio $q\sim 2\times 10^{-3}$ improves the fits by $\Delta\chi^2=181.8$, indicating that the lens possesses a planetary companion. From additional modeling by introducing an extra planetary lens component (3L1S model) and an extra source companion (2L2S model), it is found that the residuals from the 2L1S model further diminish, but claiming these interpretations is difficult due to the weak signals with $\Delta\chi^2=16.0$ and $13.5$ for the 3L1S and 2L2L models, respectively. From a Bayesian analysis, we estimate that the host of the planets has a mass of $M_{\rm host}=0.31^{+0.37}_{-0.17}~M_\odot$ and that the planetary system is located at a distance of $D_{\rm L}=7.04^{+1.10}_{-1.33}~{\rm kpc}$ toward the Galactic center. The mass of the securely detected planet is $M_{\rm p}=0.64^{+0.76}_{-0.35}~M_{\rm J}$. The signal of the potential second planet could have been confirmed if the peak of the light curve had been more densely observed by followup observations, and thus the event illustrates the need for intensive followup observations for very high-magnification events even in the current generation of high-cadence surveys.
  • Youn Kil Jung, Andrzej Udalski, Weicheng Zang, Ian A. Bond, Jennifer C. Yee, Cheongho Han, Michael D. Albrow, Sun-Ju Chung, Andrew Gould, Kyu-Ha Hwang, Yoon-Hyun Ryu, In-Gu Shin, Yossi Shvartzvald, Sang-Mok Cha, Dong-Jin Kim, Hyoun-Woo Kim, Seung-Lee Kim, Chung-Uk Lee, Dong-Joo Lee, Yongseok Lee, Byeong-Gon Park, Richard W. Pogge, Przemek Mróz, Michał K. Szymański, Jan Skowron, Radek Poleski, Igor Soszyński, Paweł Pietrukowicz, Szymon Kozłowski, Krzysztof Ulaczyk, Krzysztof A. Rybicki, Patryk Iwanek, Marcin Wrona, Fumio Abe, Richard Barry, David P. Bennett, Aparna Bhattacharya, Martin Donachie, Hirosame Fujii, Akihiko Fukui, Yuki Hirao, Yoshitaka Itow, Yukei Kamei, Iona Kondo, Naoki Koshimoto, Man Cheung Alex Li, Yutaka Matsubara, Shota Miyazaki, Yasushi Muraki, Masayuki Nagakane, Clément Ranc, Nicholas J. Rattenbury, Yuki Satoh, Hikaru Shoji, Haruno Suematsu, Denis J. Sullivan, Takahiro Sumi, Daisuke Suzuki, Paul J. Tristram, Takeharu Yamakawa, Tsubasa Yamamwaki, Atsunori Yonehara
    The Astronomical Journal 160(6) 255-255 2019年12月9日  
    We report the discovery of a cold planet with a very low planet/host mass ratio of $q=(4.09\pm0.27) \times 10^{-5}$, which is similar to the ratio of Uranus/Sun ($q=4.37 \times 10^{-5}$) in the Solar system. The Bayesian estimates for the host mass, planet mass, system distance, and planet-host projected separation are $M_{\rm host}=0.76\pm 0.40 M_\odot$, $M_{\rm planet}=10.3\pm 5.5 M_\oplus$, $D_{\rm L} = 3.3\pm1.3\,{\rm kpc}$, and $a_\perp = 3.3\pm 1.4\,{\rm au}$, respectively. The consistency of the color and brightness expected from the estimated lens mass and distance with those of the blend suggests the possibility that the most blended light comes from the planet host, and this hypothesis can be established if high resolution images are taken during the next (2020) bulge season. We discuss the importance of conducting optimized photometry and aggressive follow-up observations for moderately or very high magnification events to maximize the detection rate of planets with very low mass ratios.

共同研究・競争的資金等の研究課題

 3

メディア報道

 1