Journal of Guidance, Control, and Dynamics 46(7) 1331-1347 2023年7月 査読有り筆頭著者責任著者
This paper proposes a new methodology for solar-sail attitude control that uses only momentum wheels. Different from conventional solar sails packaged in a central hub, the sailcraft is deployed in the direction of one side of the storage. In this single-wing configuration, the offset between the center of mass (c.m.) and center of pressure (c.p.) is large and lies in the sail plane. When specular reflection is dominant, solar-radiation-pressure (SRP) force vector points in the out-of-plane direction, thus causing an in-plane SRP torque orthogonal to the c.m./c.p. offset vector. Therefore, by placing a bias momentum in the c.m./c.p. direction, the sailcraft keeps rotating in the same plane while maintaining its orientation relative to the sun. Analysis reveals that the attitude motion of the one-winged momentum-biased solar sail is basically unstable, but the system can be stabilized in a neutral manner through minor control of the bias momentum. Furthermore, adding another control moment in the out-of-plane direction enables asymptotic stability. Control in the remaining in-plane direction makes it possible to avoid wheel saturation. Numerical simulations demonstrate that both attitude maintenance and maneuver can be performed and that the controller is robust to parameter errors.
Journal of Spacecraft and Rockets 59(1) 295-311 2022年1月 査読有り筆頭著者責任著者
A novel approach for shape control of membrane structures is presented to realize their use in three-dimensional and variable configurations. The shape control is accomplished by exciting a spinning membrane. The membrane forms a shape consisting of several vibration modes, depending on the input frequency, and the wave surface stands still when its frequency is synchronized with the spin rate; that is, the wave propagation and the spin cancel each other, resulting in a static wave surface in the inertial frame. This idea enables control of continuous membrane structures with large deformation using fewer actuators than conventional methods. This paper describes the general theory of the static wave-based shape control. The mathematical model of membrane vibration, the classification of control input, and the control system for exciting a static wave are summarized. The proposed method is demonstrated through a ground experiment. A 1 m large polyimide film is rotated and vibrated in a vacuum chamber, and the output shape is measured using a real-time depth sensor. It is shown that the observed shapes agree with numerical simulation results. An additional simulation that models the Japanese solar sail Interplanetary Kite-craft Accelerated by Radiation Of the Sun (IKAROS) demonstrates that the proposed method also works with a practically large-scale membrane in the space environment.
Automated spacecraft docking is a technology that has long been pursued. Deep space explorers and small spacecraft can carry fewer resources for docking, such as navigation sensors or latching structures, than can their larger near-Earth counterparts. The concept of the probe-cone docking mechanism is an effective solution to this problem. In this approach, a probe attached to the chaser satellite is guided automatically to the connection part of the target satellite by a conical structure. It is important to have a shock attenuation mechanism at the docking interface to prevent the chaser from being bounced away from the target. In the present paper, an automated docking mechanism that uses a flexible and deployable boom as the probe is proposed, and results of an analysis of the multi-body system dynamics are presented. Although analytical investigations into docking dynamics have been reported, the dynamics depend on many interdependent design parameters, the interaction of which is yet to be investigated. The present work involved a numerical analysis of the effect of each design parameter on the satellite behavior. An energy-based index that can predict the success or failure of docking was also developed in this study. In addition, a design scheme for the parameters is presented based on the results of the analysis in which the optimal combination of the design parameters is determined by searching the solution space.
Transactions of the Japan Society for Aeronautical and Space Sciences 61(3) 119-131 2018年 査読有り筆頭著者責任著者
Spinning-type membrane space structures easily deform because they have no supporting structure. This may lead to an unexpected change in the effect of solar radiation pressure (SRP) on the membranes. Since SRP is a dominant factor of the dynamics of membrane space structures, especially for solar sails, knowledge of deformation is vital. However, it is almost impossible to precisely predict and design the actual deformation of membranes. This study provides a method to actively control the deformation of spinning membrane space structures. A completely fuel-free solar sailing technique is also shown as one application of the shape-control method developed.
Advances in the Astronautical Sciences 167(3) 2825-2834 2019年8月 筆頭著者
Attitude dynamics and control of spinning solar sails are investigated considering the flexibility of sail membranes. Attitude maneuver of solar sails is, in many cases, performed using thrusters. In most studies, the attitude motion is analyzed assuming that the spacecraft is a rigid disk. However, the sail membrane deforms during attitude maneuver due to flexibility. This may cause coupled vibration between the spacecraft main body and sail membrane. This study presents an analysis model of spinning solar sail attitude dynamics considering sail deformation, based on modal analysis.