Kei Sano, Takao Nakagawa, Shuji Matsuura, Koji Takimoto, Aoi Takahashi, Tetsuhito Fuse, Rodrigo Cordova, Victor Hugo Schulz, Pooja Lepcha, Necmi Cihan Örger, Daisuke Nakayama, Joseph Ofosu, Reynel Josue Galindo Rosales, Eyoas E. Areda, Pema Zangmo, Ezra Fielding, Keenan A. A. Chatar, Yukihisa Otani, Hisataka Kawasaki, Bastien B. A. Morelle, John Almonte, Shunsuke Nakagawa, Yuto Tome, Shohei Karaki, Chinathip Narongphun, Hari Shrestha, Marco Rosa, David Dai, Wenceslao Bejarano, Akihiro Ikeda, Rin Sato, Kentaro Hayashida, Hiroki Miyagawa, Masahiro Nishioka, Kana Kurosaki, Isami Kato, Satoshi Ikari, Kohji Tsumura, Ichiro Jikuya, Hideo Matsuhara, Umi Enokidani, Hayato Tanaka, Yuki Hirose, Akimasa Ojika, Akane Tsumoto, Taiko Iwaki, Yuki Ohara, Mengu Cho, Kentaro Kitamura, Hirokazu Masui, Mariko Teramoto, Takashi Yamauchi, Ryo Hashimoto, Emino Fukumoto, Zamba Leonel, Arisa Oho, Shoki Yabumoto, Hayato Masuno, Chisato Arakawa, Kouta Miyamoto, Takehiko Wada, Naoki Isobe, Yasuyuki Miyazaki, Ryu Funase, Hajime Kawahara, Keiichi Hirako, Yoichi Yatsu, Yoshihide Aoyanagi
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 13092 33-33 2024年8月23日
We describe scientific o bjective a nd p roject s tatus o f a n a stronomical 6 U C ubeSat m ission V ERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat). The scientific g oal o f V ERTECS i s t o reveal the star-formation history along the evolution of the universe by measuring the extragalactic background light (EBL) in the visible wavelength. Earlier observations have shown that the near-infrared EBL is several times brighter than integrated light of individual galaxies. As candidates for the excess light, first-generation s tars in the early universe or low-redshift intra-halo light have been proposed. Since these objects are expected to show different e mission s pectra i n v isible w avelengths, m ulti-color v isible o bservations a re c rucial t o r eveal t he origin of the excess light. Since detection sensitivity of the EBL depends on the product of the telescope aperture and the field o f v iew, i t i s p ossible t o o bserve i t w ith a s mall b ut w ide-field te lescope sy stem th at ca n be mounted on the limited volume of CubeSat. In VERTECS mission, we develop a 6U CubeSat equipped with a 3U-sized telescope optimized for observation of the visible EBL. The bus system composed of onboard computer, electric power system, communication subsystem, and structure is based on heritage of series of CubeSats developed at Kyushu Institute of Technology in combination with high-precision attitude control subsystem and deployable solar array paddle required for the mission. The VERTECS mission was selected for JAXA-Small Satellite Rush Program (JAXA-SMASH Program), a new program that encourages universities, private companies and JAXA to collaborate to realize small satellite missions utilizing commercial small launch opportunities, and to diversify transportation services in Japan. We started the satellite development in December 2022 and plan to launch the satellite in FY2025.