Faculty of Applied Life Science 

倉岡 睦季

クラオカ ムツキ  (Mutsuki Kuraoka)

基本情報

所属
日本獣医生命科学大学 応用生命科学部 助教
学位
博士(獣医学)

J-GLOBAL ID
201701004760974508
researchmap会員ID
B000277223

論文

 17
  • Mutsuki Kuraoka, Yoshitsugu Aoki, Shin'ichi Takeda
    Experimental animals 70(4) 419-430 2021年6月16日  査読有り責任著者
    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
  • Yuko Nitahara-Kasahara, Mutsuki Kuraoka, Yuki Oda, Hiromi Hayashita-Kinoh, Shin'ichi Takeda, Takashi Okada
    Stem cell research & therapy 12(1) 105 2021年2月4日  査読有り
    BACKGROUND: Multipotent mesenchymal stromal cells (MSCs) are potentially therapeutic for muscle disease because they can accumulate at the sites of injury and act as immunosuppressants. MSCs are attractive candidates for cell-based strategies that target diseases with chronic inflammation, such as Duchenne muscular disease (DMD). We focused on the anti-inflammatory properties of IL-10 and hypothesized that IL-10 could increase the typically low survival of MSCs by exerting a paracrine effect after transplantation. METHODS: We developed a continuous IL-10 expression system of MSCs using an adeno-associated virus (AAV) vector. To investigate the potential benefits of IL-10 expressing AAV vector-transduced MSCs (IL-10-MSCs), we examined the cell survival rates in the skeletal muscles after intramuscular injection into mice and dogs. Systemic treatment with IL-10-MSCs derived from dental pulp (DPSCs) was comprehensively analyzed using the canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients. RESULTS: In vivo bioluminescence imaging analysis revealed higher retention of IL-10-MSCs injected into the hindlimb muscle of mice. In the muscles of dogs, myofiber-like tissue was formed after the stable engraftment of IL-10-MSCs. Repeated systemic administration of IL-10-DPSCs into the CXMDJ model resulted in long-term engraftment of cells and slightly increased the serum levels of IL-10. IL-10-hDPSCs showed significantly reduced expression of pro-inflammatory MCP-1 and upregulation of stromal-derived factor-1 (SDF-1). MRI and histopathology of the hDPSC-treated CXMDJ indicated the regulation of inflammation in the muscles, but not myogenic differentiation from treated cells. hDPSC-treated CXMDJ showed improved running capability and recovery in tetanic force with concomitant increase in physical activity. Serum creatine kinase levels, which increased immediately after exercise, were suppressed in IL-10-hDPSC-treated CXMDJ. CONCLUSIONS: In case of local injection, IL-10-MSCs could maintain the long-term engraftment status and facilitate associated tissue repair. In case of repeated systemic administration, IL-10-MSCs facilitated the long-term retention of the cells in the skeletal muscle and also protected muscles from physical damage-induced injury, which improved muscle dysfunction in DMD. We can conclude that the local and systemic administration of IL-10-producing MSCs offers potential benefits for DMD therapy through the beneficial paracrine effects of IL-10 involving SDF-1.
  • Yuko Nitahara-Kasahara, Mutsuki Kuraoka, Posadas Herrera Guillermo, Hiromi Hayashita-Kinoh, Yasunobu Maruoka, Aki Nakamura-Takahasi, Koichi Kimura, Shin'ichi Takeda, Takashi Okada
    Stem cell research & therapy 12(1) 78 2021年1月25日  査読有り
    BACKGROUND: Duchenne muscular dystrophy (DMD) is an inherited progressive disorder that causes skeletal and cardiac muscle deterioration with chronic inflammation. Dental pulp stem cells (DPSCs) are attractive candidates for cell-based strategies for DMD because of their immunosuppressive properties. Therefore, we hypothesized that systemic treatment with DPSCs might show therapeutic benefits as an anti-inflammatory therapy. METHODS: To investigate the potential benefits of DPSC transplantation for DMD, we examined disease progression in a DMD animal model, mdx mice, by comparing them with different systemic treatment conditions. The DPSC-treated model, a canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients, also underwent comprehensive analysis, including histopathological findings, muscle function, and locomotor activity. RESULTS: We demonstrated a therapeutic strategy for long-term functional recovery in DMD using repeated DPSC administration. DPSC-treated mdx mice and CXMDJ showed no serious adverse events. MRI findings and muscle histology suggested that DPSC treatment downregulated severe inflammation in DMD muscles and demonstrated a milder phenotype after DPSC treatment. DPSC-treated models showed increased recovery in grip-hand strength and improved tetanic force and home cage activity. Interestingly, maintenance of long-term running capability and stabilized cardiac function was also observed in 1-year-old DPSC-treated CXMDJ. CONCLUSIONS: We developed a novel strategy for the safe and effective transplantation of DPSCs for DMD recovery, which included repeated systemic injection to regulate inflammation at a young age. This is the first report on the efficacy of a systemic DPSC treatment, from which we can propose that DPSCs may play an important role in delaying the DMD disease phenotype.
  • Hiromi Hayashita-Kinoh, Posadas-Herrera Guillermo, Yuko Nitahara-Kasahara, Mutsuki Kuraoka, Hironori Okada, Tomoko Chiyo, Shin'ichi Takeda, Takashi Okada
    Molecular therapy. Methods & clinical development 20 133-141 2020年11月17日  査読有り
    Duchenne muscular dystrophy (DMD) is a severe congenital disease associated with mutation of the dystrophin gene. Supplementation of dystrophin using recombinant adeno-associated virus (rAAV) has promise as a treatment for DMD, although vector-related general toxicities, such as liver injury, neurotoxicity, and germline transmission, have been suggested in association with the systemic delivery of high doses of rAAV. Here, we treated normal or dystrophic dogs with rAAV9 transduction in conjunction with multipotent mesenchymal stromal cell (MSC) injection to investigate the therapeutic effects of an rAAV expressing microdystrophin (μDys) under conditions of immune modulation. Bone-marrow-derived MSCs, rAAV-CMV-μDys, and a rAAV-CAG-luciferase (Luc) were injected into the jugular vein of a young dystrophic dog to induce systemic expression of μDys. One week after the first injection, the dog received a second intravenous injection of MSCs, and on the following day, rAAV was intravenously injected into the same dog. Systemic injection of rAAV9 with MSCs pretreatment improves gene transfer into normal and dystrophic dogs. Dystrophic phenotypes significantly improved in the rAAV-μDys-injected dystrophic dog, suggesting that an improved rAAV-μDys treatment including immune modulation induces successful long-term transgene expression to improve dystrophic phenotypes.
  • Hirotada Otsuka, Yasuo Endo, Hiroshi Ohtsu, Satoshi Inoue, Mutsuki Kuraoka, Miki Koh, Hideki Yagi, Masanori Nakamura, Satoshi Soeta
    Anatomical record (Hoboken, N.J. : 2007) 304(5) 1136-1150 2020年10月9日  査読有り
    Histidine decarboxylase (HDC), histamine synthase, is expressed in hematopoietic stem cells and in lineage-committed progenitors in the bone marrow (BM). However, the role of histamine in hematopoiesis is not well described. To evaluate the role of histamine in hematopoiesis, we analyzed the changes in HDC expression at hematopoietic sites, the BM, spleen, and liver of 2-, 3-, and 6-week old wild-type mice. We also performed morphological analyses of the hematopoietic sites using HDC-deficient (HDC-KO) mice. In wild-type adults, HDC expression in the BM was higher than that in the spleen and liver and showed an age-dependent increase. Histological analysis showed no significant change in the adult BM and spleen of HDC-KO mice compared to wild-type mice. In the liver, HDC expression was temporarily increased at 3 weeks, and decreased at 6 weeks of age. Morphological analysis of the liver revealed more numerous hematopoietic colonies and megakaryocytes in HDC-KO mice compared to wild-type mice at 2 and 3 weeks of age, whereas no changes were observed in adults. Most of these hematopoietic colonies consisted of B220-positive B-lymphocytes and TER119-positive erythroblasts and were positive for the cell proliferation marker PCNA. Notably, these hematopoietic colonies declined in HDC-KO mice upon N-acetyl histamine treatment. A significant increase in the expression of hematopoiesis-related cytokines, IL3, IL7, EPO, G-CSF, and Cxcl12 was observed in the liver of 3-week old HDC-KO mice compared to wild-type mice. These results suggest that histamine-deficiency may maintain an environment suitable for hematopoiesis by regulating hematopoiesis-related cytokine expression in the liver of postnatal mice. This article is protected by copyright. All rights reserved.

MISC

 52

講演・口頭発表等

 24

担当経験のある科目(授業)

 8

共同研究・競争的資金等の研究課題

 3

社会貢献活動

 2