研究者業績

吉川 悠子

Yuko Yoshikawa

基本情報

所属
日本獣医生命科学大学 獣医学部 獣医学科

J-GLOBAL ID
201501020938348232
researchmap会員ID
B000250306

委員歴

 1

論文

 13
  • Mai Kato, Momoka Yamaguchi, Akira Ooka, Ryota Takahashi, Takuji Suzuki, Keita Onoda, Yuko Yoshikawa, Yuta Tsunematsu, Michio Sato, Yasukiyo Yoshioka, Miki Igarashi, Sumio Hayakawa, Kumiko Shoji, Yutaka Shoji, Tomohisa Ishikawa, Kenji Watanabe, Noriyuki Miyoshi
    Scientific reports 13(1) 8924-8924 2023年6月1日  
    The increased incidence of obesity in the global population has increased the risk of several chronic inflammation-related diseases, including non-alcoholic steatohepatitis (NASH)-hepatocellular carcinoma (HCC). The progression from NASH to HCC involves a virus-independent liver carcinogenic mechanism; however, we currently lack effective treatment and prevention strategies. Several reports have suggested that fecal volatile organic compounds (VOCs) are strongly associated with NASH-HCC; therefore, we explored the biomarkers involved in its pathogenesis and progression. Fecal samples collected from control and NASH-HCC model STAM mice were subjected to headspace autosampler gas chromatography-electron ionization-mass spectrometry. Non-target profiling analysis identified diacetyl (2,3-butandione) as a fecal VOC that characterizes STAM mice. Although fecal diacetyl levels were correlated with the HCC in STAM mice, diacetyl is known as a cytotoxic/tissue-damaging compound rather than genotoxic or mutagenic; therefore, we examined the effect of bioactivity associated with NASH progression. We observed that diacetyl induced several pro-inflammatory molecules, including tumor necrosis factor-α, cyclooxygenase-2, monocyte chemoattractant protein-1, and transforming growth factor-β, in mouse macrophage RAW264.7 and Kupffer KPU5 cells. Additionally, we observed that diacetyl induced α-smooth muscle actin, one of the hallmarks of fibrosis, in an ex vivo cultured hepatic section, but not in in vitro hepatic stellate TWNT-1 cells. These results suggest that diacetyl would be a potential biomarker of fecal VOC in STAM mice, and its ability to trigger the macrophage-derived inflammation and fibrosis may partly contribute to NASH-HCC carcinogenesis.
  • TAKUMI NARITA, YUTA TSUNEMATSU, NORIYUKI MIYOSHI, MASAMI KOMIYA, TAKAHIRO HAMOYA, GEN FUJII, YUKO YOSHIKAWA, MICHIO SATO, MASANOBU KAWANISHI, HARUHIKO SUGIMURA, YUJI IWASHITA, YUKARI TOTSUKA, MASARU TERASAKI, KENJI WATANABE, KEIJI WAKABAYASHI, MICHIHIRO MUTOH
    In Vivo 36(2) 628-634 2022年  査読有り
  • Yuta Tsunematsu, Koji Hosomi, Jun Kunisawa, Michio Sato, Noriko Shibuya, Emiko Saito, Haruka Murakami, Yuko Yoshikawa, Yuji Iwashita, Noriyuki Miyoshi, Michihiro Mutoh, Hideki Ishikawa, Haruhiko Sugimura, Motohiko Miyachi, Keiji Wakabayashi, Kenji Watanabe
    BMC microbiology 21(1) 235-235 2021年8月24日  査読有り
    BACKGROUND: The Escherichia coli strain that is known to produce the genotoxic secondary metabolite colibactin is linked to colorectal oncogenesis. Therefore, understanding the properties of such colibactin-positive E. coli and the molecular mechanism of oncogenesis by colibactin may provide us with opportunities for early diagnosis or prevention of colorectal oncogenesis. While there have been major advances in the characterization of colibactin-positive E. coli and the toxin it produces, the infection route of the clb + strain remains poorly characterized. RESULTS: We examined infants and their treatments during and post-birth periods to examine potential transmission of colibactin-positive E. coli to infants. Here, analysis of fecal samples of infants over the first month of birth for the presence of a colibactin biosynthetic gene revealed that the bacterium may be transmitted from mother to infant through intimate contacts, such as natural childbirth and breastfeeding, but not through food intake. CONCLUSIONS: Our finding suggests that transmission of colibactin-positive E. coli appears to be occurring at the very early stage of life of the newborn and hints at the possibility of developing early preventive measures against colorectal cancer.
  • Tao Zhou, Yuichiro Hirayama, Yuta Tsunematsu, Nanami Suzuki, Seiji Tanaka, Nahoko Uchiyama, Yukihiro Goda, Yuko Yoshikawa, Yuji Iwashita, Michio Sato, Noriyuki Miyoshi, Michihiro Mutoh, Hideki Ishikawa, Haruhiko Sugimura, Keiji Wakabayashi, Kenji Watanabe
    Journal of the American Chemical Society 143(14) 5526-5533 2021年4月14日  査読有り
    Colibactin is a polyketide-nonribosomal peptide hybrid secondary metabolite that can form interstrand cross-links in double-stranded DNA. Colibactin-producing Escherichia coli has also been linked to colorectal oncogenesis. Thus, there is a strong interest in understanding the role colibactin may play in oncogenesis. Here, using the high-colibactin-producing wild-type E. coli strain we isolated from a clinical sample with the activity-based fluorescent probe we developed earlier, we were able to identify colibactin 770, which was recently identified and proposed as the complete form of colibactin, along with colibactin 788, 406, 416, 420, and 430 derived from colibactin 770 through structural rearrangements and solvolysis. Furthermore, we were able to trap the degrading mature colibactin species by converting the diketone moiety into quinoxaline in situ in the crude culture extract to form colibactin 860 at milligram scale. This allowed us to determine the stereochemically complex structure of the rearranged form of an intact colibactin, colibactin 788, in detail. Furthermore, our study suggested that we were capturing only a few percent of the actual colibactin produced by the microbe, providing a crude quantitative insight into the inherent instability of this compound. Through the structural assignment of colibactins and their degradative products by the combination of LC-HRMS and NMR spectroscopies, we were able to elucidate further the fate of inherently unstable colibactin, which could help acquire a more complete picture of colibactin metabolism and identify key DNA adducts and biomarkers for diagnosing colorectal cancer.
  • Yuko Yoshikawa, Yuta Tsunematsu, Nobuo Matsuzaki, Yuichiro Hirayama, Fumi Higashiguchi, Michio Sato, Yuji Iwashita, Noriyuki Miyoshi, Michihiro Mutoh, Hideki Ishikawa, Haruhiko Sugimura, Keiji Wakabayashi, Kenji Watanabe
    Japanese journal of infectious diseases 73(6) 437-442 2020年5月29日  査読有り筆頭著者
    We investigated the relationship between colibactin-producing (clb+) Escherichia coli and colorectal adenocarcinoma. In total, 729 E. coli colonies were isolated from tumor and surrounding non-tumor regions in resected specimens from 34 Japanese patients; 450 colonies were from tumor regions and 279 from non-tumor regions. clb+ bacteria were found in tumor regions of 11 patients (11/34, 32.4%) and in non-tumor regions of seven of the 11 (7/34, 20.6%). The prevalence of clb+ isolates was 72.7% (327/450) and 44.1% (123/279) in tumor and non-tumor regions, respectively. All the recovered clb+ isolates belonged to the phylogenetic group B2 and were the most predominant type in tumor regions. Hemolytic (α-hemolysin-positive, hlyA+) and non-hemolytic (α-hemolysin-negative, hlyA-) clb+ isolates were obtained from patient #19; however, the prevalence of hlyA+ clb+ isolates was significantly higher in tumor regions (35/43, 81.4%) than in non-tumor regions (3/19, 15.8%). Moreover, a significantly higher production of N-myristoyl-D-asparagine, a byproduct of colibactin biosynthesis, was observed in hlyA+ clb+ isolates than in hlyA- clb+ isolates. Our results suggest that hlyA+ clb+ E. coli may have a selective advantage in colorectal colonization, consequently playing a role in carcinogenesis. The presence of hlyA+ clb+ bacteria in healthy individuals is a risk marker of colorectal cancer.
  • Shunsuke Sanada, Takuji Suzuki, Akika Nagata, Tsutomu Hashidume, Yuko Yoshikawa, Noriyuki Miyoshi
    Scientific reports 10(1) 6479-6479 2020年4月15日  査読有り
    It is crucial that the host and intestinal microflora interact and influence each other to maintain homeostasis and trigger pathological processes. Recent studies have shown that transplantation of the murine intestinal content to recipient germ-free mice enables transmission of the donor's phenotypes, such as low level chronic inflammation associated with lifestyle-related diseases. These findings indicate that intestinal bacteria produce some molecules to trigger pathological signals. However, fecal microbial metabolites that induce obesity and the type II diabetic phenotype have not been fully clarified. Here, we showed that the intestinal bacterial metabolite stercobilin, a pigment of feces, induced proinflammatory activities including TNF-α and IL-1β induction in mouse macrophage RAW264 cells. Proinflammatory stercobilin levels were significantly higher in ob/ob mice feces than in the feces of control C57BL/6 J mice. Moreover, in this study, we detected stercobilin in mice plasma for the first time, and the levels were higher in ob/ob mice than that of C57BL/6 J mice. Therefore, stercobilin is potentially reabsorbed, circulated through the blood system, and contributes to low level chronic inflammation in ob/ob mice. Since, stercobilin is a bioactive metabolite, it could be a potentially promising biomarker for diagnosis. Further analyses to elucidate the metabolic rate and the reabsorption mechanism of stercobilin may provide possible therapeutic and preventive targets.
  • Yoshitsugu Ochiai, Yuko Yoshikawa, Takashi Takano, Makoto Mori, Ryo Hondo, Mariko Mochizuki, Fukiko Ueda
    The Journal of veterinary medical science 82(6) 735-739 2020年4月9日  査読有り筆頭著者
    A Japanese resident bird, Phalacrocorax carbo hanedae (Japanese name: Kawa-u), was threatened with extinction due to deterioration of its habitat in the 1970s, but the population has since recovered thanks to environmental protection measures. This study analyzed the genetic diversity of 18 Kawa-u individuals living in the basins of the Abe and Warashina rivers in Shizuoka Prefecture, Japan. We obtained seven haplotypes of mitochondrial D-loop sequences and compared them with 49 European P. carbo D-loop haplotypes. We identified four new haplotypes but no clear genetic evidence distinguishing the Kawa-u as a distinct subspecies of P. carbo. Our results suggest the need for further surveillance of the P. carbo genetic lineage, regardless of the geographical distribution.
  • Yoshitsugu Ochiai, Yuko Yoshikawa, Mariko Mochizuki, Takashi Takano, Fukiko Ueda
    Food microbiology 86 103312-103312 2020年4月  査読有り
    Some Listeria monocytogenes strains are persistent in food processing environments, where this pathogen may be subjected to various stresses. This study aimed to elucidate the response of persistent strains of L. monocytogenes to low pH and H2O2 exposure. Almost all of the persistent strains examined were highly susceptible to low pH, whereas H2O2 susceptibility was comparable to that of control strains. Two persistent strains isolated from the same sample, however, exhibited lower susceptibility to low pH. These findings suggest an acid-susceptible phenotype predominates in the habitat, indicating that environmental conditions contribute to the establishment of persistence. Representative strains exhibiting acid-susceptible and less acid-susceptible phenotypes were further investigated regarding acid response characteristics. Less acid-susceptible strains exhibited increased survival in acidified brain heart infusion (BHI) broth compared with acidified phosphate-buffered saline (PBS). These strains also exhibited increased survival in acidified PBS containing glucose and glutamate, which are involved in acid response mechanisms, compared with acidified PBS alone. However, neither acidified BHI broth nor exogenous glucose and glutamate increased survival of acid-susceptible strains. An adaptive acid tolerance response of the acid-susceptible phenotype was observed, but this was limited compared with that of the less acid-susceptible phenotype.
  • Yuko Yoshikawa, Kei Sugimoto, Yoshitsugu Ochiai, Norio Ohashi
    Microbiology and immunology 64(4) 270-279 2020年4月  査読有り筆頭著者責任著者
    Anaplasma phagocytophilum, an obligate intracellular bacterium that propagates within host granulocytes, is considered to modify the host intracellular environment for pathogenesis. However, the mechanism(s) underlying such host modifications remain unclear. Here, we aimed to investigate the relation between A. phagocytophilum and endoplasmic reticulum (ER) stress in THP-1 cells. A. phagocytophilum activated the three ER stress sensors: inositol-requiring enzyme-1 (IRE1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor-6 (ATF6). IRE1 activation occurred immediately after host cell invasion by A. phagocytophilum; however, the activated IRE1-induced splicing of X-box-binding protein 1 was not promoted during A. phagocytophilum infection. This suppression was sustained even after the doxycycline-mediated elimination of intracellular A. phagocytophilum. IRE1 knockdown accelerated A. phagocytophilum-induced apoptosis and decreased intracellular A. phagocytophilum. These data suggest that A. phagocytophilum utilizes IRE1 activation to promote its own intracellular proliferation. Moreover, PERK and ATF6 partially mediated A. phagocytophilum-induced apoptosis by promoting the expression of CCAAT/enhancer-binding protein homologous protein, which induces the transcription of several proapoptotic genes. Thus, A. phagocytophilum possibly manipulates the host ER stress signals to facilitate intracellular proliferation and infection of surrounding cells before/after host cell apoptosis.
  • Misaki Uchikawa, Mai Kato, Akika Nagata, Shunsuke Sanada, Yuto Yoshikawa, Yuta Tsunematsu, Michio Sato, Takuji Suzuki, Tsutomu Hashidume, Kenji Watanabe, Yuko Yoshikawa, Noriyuki Miyoshi
    Scientific reports 10(1) 5681-5681 2020年3月30日  査読有り
    When the microfloral composition deteriorates, it triggers low-level chronic inflammation associated with several lifestyle-related diseases including obesity and diabetic mellitus. Fecal volatile organic compounds (VOCs) have been found to differ in gastrointestinal diseases as well as intestinal infection. In this study, to evaluate a potential association between the pathogenesis of lifestyle-related diseases and VOCs in the intestinal tract, fecal VOCs from obese/diabetic KK-Ay mice (KK) or controls (C57BL/6J mice; BL) fed a normal or high fat diet (NFD or HFD) were investigated using headspace sampler-GC-EI-MS. Principal component analysis (PCA) of fecal VOC profiles clearly separated the experimental groups depending on the mouse lineage (KK vs BL) and the diet type (NFD vs HFD). 16 s rRNA sequencing revealed that the PCA distribution of VOCs was in parallel with the microfloral composition. We identified that some volatile metabolites including n-alkanals (nonanal and octanal), acetone and phenol were significantly increased in the HFD and/or KK groups. Additionally, these volatile metabolites induced proinflammatory activity in the RAW264 murine macrophage cell line indicating these bioactive metabolites might trigger low-level chronic inflammation. These results suggest that proinflammatory VOCs detected in HFD-fed and/or diabetic model mice might be novel noninvasive diagnosis biomarkers for diabetes.
  • Takako Kondo, Saori Saigo, Shinya Ugawa, Mai Kato, Yuto Yoshikawa, Noriyuki Miyoshi, Kenichi Tanabe
    The Journal of nutritional biochemistry 75 108247-108247 2020年1月  査読有り
    Nutrition and dietary habits contribute to the onset and progression of sensorineural hearing loss (SNHL). Fructo-oligosaccharides (FOS) are non-digestible oligosaccharides and are known as prebiotics, which enhance short-chain fatty acid (SCFA) production and antioxidant activity. Although a substantial number of studies have shown that FOS play a role in the prevention of lifestyle-related diseases as prebiotics, little is known about the effects on the inner ear. The purpose of this study is to investigate the effect of FOS on gene expression and spiral ganglion neuron (SGN) protection in the inner ear of DBA/2 J mice, which is a model for early-onset progressive hearing loss. DBA/2 J mice were fed either control diet or FOS diet contained 10% (w/w) of FOS for 8 weeks. Analysis of mice fed the FOS diet revealed a change in intestinal flora including an inversion of the ratio of Bacteroidetes and Firmicutes, which was followed by a significant increase in SCFAs in the cecum and a decrease in an oxidative stress marker in the serum. In the inner ear, gene expression of neurotrophin, brain-derived neurotrophic factor (BDNF), its receptor, tyrosine kinase receptor b (Trkb), and the SCFA receptor, free fatty acid receptor 3 (FFAR3), were increased by FOS. In addition, the survival rate of SGNs in the inner ear was maintained in FOS-fed mice. Altogether, these results suggest that a compositional variation of the intestinal flora due to a prebiotic effect may be involved in the progression of SNHL.
  • Masanobu Kawanishi, Chiaki Shimohara, Yoshimitsu Oda, Yuuta Hisatomi, Yuta Tsunematsu, Michio Sato, Yuichiro Hirayama, Noriyuki Miyoshi, Yuji Iwashita, Yuko Yoshikawa, Haruhiko Sugimura, Michihiro Mutoh, Hideki Ishikawa, Keiji Wakabayashi, Takashi Yagi, Kenji Watanabe
    Genes and environment : the official journal of the Japanese Environmental Mutagen Society 42 12-12 2020年  査読有り
    Introduction: Colibactin is a small genotoxic molecule produced by enteric bacteria, including certain Escherichia coli (E. coli) strains harbored in the human large intestine. This polyketide-peptide genotoxin is considered to contribute to the development of colorectal cancer. The colibactin-producing (clb+) microorganisms possess a 54-kilobase genomic island (clb gene cluster). In the present study, to assess the distribution of the clb gene cluster, genotyping analysis was carried out among E. coli strains randomly chosen from the Japan Collection of Microorganisms, RIKEN BRC, Japan. Findings: The analysis revealed that two of six strains possessed a clb gene cluster. These clb+ strains JCM5263 and JCM5491 induced genotoxicity in in vitro micronucleus (MN) tests using rodent CHO AA8 cells. Since the induction level of MN by JCM5263 was high, a bacterial umu test was carried out with a cell extract of the strain, revealing that the extract had SOS-inducing potency in the umu tester bacterium. Conclusion: These results support the observations that the clb gene cluster is widely distributed in nature and clb+E. coli having genotoxic potencies is not rare among microorganisms.
  • Masanobu Kawanishi, Yuuta Hisatomi, Yoshimitsu Oda, Chiaki Shimohara, Yuta Tsunematsu, Michio Sato, Yuichiro Hirayama, Noriyuki Miyoshi, Yuji Iwashita, Yuko Yoshikawa, Haruhiko Sugimura, Michihiro Mutoh, Hideki Ishikawa, Keiji Wakabayashi, Takashi Yagi, Kenji Watanabe
    The Journal of toxicological sciences 44(12) 871-876 2019年  査読有り
    Colibactin is a polyketide-peptide genotoxin produced by enteric bacteria such as E. coli, and is considered to contribute to the development of colorectal cancer. We previously isolated E. coli strains from Japanese colorectal cancer patients, and in the present study we investigated the genotoxic potency of the colibactin-producing (clb+) E. coli strains that carry the polyketide synthases "pks" gene cluster (pks+) and an isogenic clb- mutant in which the colibactin-producing ability is impaired. Measurement of phosphorylated histone H2AX indicated that DNA double strand breaks were induced in mammalian CHO AA8 cells infected with the clb+ E. coli strains. Induction of DNA damage response (SOS response) by crude extract of the clb+ strains was 1.7 times higher than that of the clb- E. coli in an umu assay with a Salmonella typhimurium TA1535/pSK1002 tester strain. Micronucleus test with CHO AA8 cells revealed that infection with the clb+ strains induced genotoxicity, i.e., the frequencies of micronucleated cells infected with clb+ strain were 4-6 times higher than with the clb- strain. Since the intestinal flora are affected by dietary habits that are strongly associated with ethnicity, these data may contribute to both risk evaluation and prevention of colorectal cancer in the Japanese population.

MISC

 6

講演・口頭発表等

 8

担当経験のある科目(授業)

 5

共同研究・競争的資金等の研究課題

 2