Faculty of Veterinary Science

盆子原 誠

ボンコバラ マコト  (Makoto Bonkobara)

基本情報

所属
日本獣医生命科学大学 獣医学部 獣医学科 教授
学位
博士(東京大学)

J-GLOBAL ID
200901077866493775
researchmap会員ID
1000365146

論文

 86
  • Hajime Asada, Akiyoshi Tani, Hiroki Sakuma, Miyuki Hirabayashi, Yuki Matsumoto, Kei Watanabe, Masaya Tsuboi, Shino Yoshida, Kei Harada, Takao Uchikai, Yuko Goto-Koshino, James K. Chambers, Genki Ishihara, Tetsuya Kobayashi, Mitsuhiro Irie, Kazuyuki Uchida, Koichi Ohno, Makoto Bonkobara, Hajime Tsujimoto, Hirotaka Tomiyasu
    Scientific Reports 13(1) 2023年5月25日  査読有り
    Abstract Histiocytic sarcoma (HS) is an incurable aggressive tumor, and no consensus has been made on the treatment due to its rare occurrence. Since dogs spontaneously develop the disease and several cell lines are available, they have been advocated as translational animal models. In the present study, therefore, we explored gene mutations and aberrant molecular pathways in canine HS by next generation sequencing to identify molecular targets for treatment. Whole exome sequencing and RNA-sequencing revealed gene mutations related to receptor tyrosine kinase pathways and activation of ERK1/2, PI3K-AKT, and STAT3 pathways. Analysis by quantitative PCR and immunohistochemistry revealed that fibroblast growth factor receptor 1 (FGFR1) is over-expressed. Moreover, activation of ERK and Akt signaling were confirmed in all HS cell lines, and FGFR1 inhibitors showed dose-dependent growth inhibitory effects in two of the twelve canine HS cell lines. The findings obtained in the present study indicated that ERK and Akt signaling were activated in canine HS and drugs targeting FGFR1 might be effective in part of the cases. The present study provides translational evidence that leads to establishment of novel therapeutic strategies targeting ERK and Akt signaling in HS patients.
  • Masanori Kobayashi, Moe Onozawa, Shiho Watanabe, Tomokazu Nagashima, Kyoichi Tamura, Yoshiaki Kubo, Akiko Ikeda, Kazuhiko Ochiai, Masaki Michishita, Makoto Bonkobara, Masato Kobayashi, Tatsuya Hori, Eiichi Kawakami
    Veterinary and comparative oncology 2023年2月6日  査読有り
    Canine prostate cancer (cPCa) is a malignant neoplasm with no effective therapy. The BRAF V595E mutation, corresponding to the human BRAF V600E mutation, is found frequently in cPCa. Activating BRAF mutations are recognized as oncogenic drivers, and blockade of MAPK/ERK phosphorylation may be an effective therapeutic target against BRAF-mutated tumors. The aim of this study was to establish a novel cPCa cell line and to clarify the antitumor effects of MEK inhibitors on cPCa in vitro and in vivo. We established the novel CHP-2 cPCa cell line that was derived from the prostatic tissue of a cPCa patient. Sequencing of the canine BRAF gene in two cPCa cell lines revealed the presence of the BRAF V595E mutation. MEK inhibitors (trametinib, cobimetinib, and mirdametinib) strongly suppressed cell proliferation in vitro, and trametinib showed the highest efficacy against cPCa cells with minimal cytotoxicity to non-cancer COPK cells. Furthermore, we orally administered 0.3 or 1.0 mg/kg trametinib to CHP-2 xenografted mice and examined its antitumor effects in vivo. Trametinib reduced tumor volume, decreased phosphorylated ERK levels, and lowered Ki-67 expression in xenografts in a dose-dependent manner. Although no clear adverse events were observed with administration, trametinib-treated xenografts showed osteogenesis that was independent of dosage. Our results indicate that trametinib induces cell cycle arrest by inhibiting ERK activation, resulting in cPCa tumor regression in a dose-dependent manner. MEK inhibitors, in addition to BRAF inhibitors, may be a targeted agent option for cPCa with the BRAF V595E mutation. This article is protected by copyright. All rights reserved.
  • Hiroyuki Tani, Ryo Miyamoto, Teruki Miyazaki, Shingo Oniki, Kyoichi Tamura, Makoto Bonkobara
    BMC veterinary research 18(1) 384-384 2022年11月3日  査読有り最終著者責任著者
    BACKGROUND: Multiple myeloma (MM) is an uncommon neoplasm in cats. There is no established standard of treatment due to the rare occurrence of this disease in cats. Bortezomib is a proteasome inhibitor that serves as the first-line drug for MM in humans, but its effectiveness currently is unknown in feline MM. We present here the case report of a feline MM that exhibited a favorable response to bortezomib. CASE PRESENTATION: The case was an 11-year-old non-castrated male domestic cat with light-chain MM presenting with clinical symptoms (anorexia, fatigue, and vomiting), mild azotemia, and pancytopenia. The cat failed on melphalan with prednisolone (MP), so bortezomib (Velcade) was initiated on Day 88. A total of 6 cycles of the treatment was performed, with each treatment cycle consisting of twice-weekly subcutaneous administration for 2 weeks followed by a 1-week rest. The dose of bortezomib was 0.7 mg/m2 for first week and 1.0 mg/m2 for second week in the first cycle. A dose of 0.7 mg/m2 was used for subsequent cycles. Prednisolone was used concomitantly in the first 2 cycles. Following treatment with bortezomib, clinical symptoms disappeared and a decrease in serum globulin and recovery of pancytopenia were noted. A monoclonal gammopathy, overproduction of serum immunoglobulin light chain, and Bence-Jones proteinuria that existed at diagnosis were undetectable on Day 123. A monoclonal gammopathy also was not detectable at the end of the bortezomib treatment (Day 213). Anorexia, fatigue, and marked bone marrow toxicity were experienced when bortezomib was administrated at a dose of 1.0 mg/m2, while no recognizable toxicity was observed at a dose of 0.7 mg/m2 throughout the treatment period. The case was placed on follow-up and there was no evidence of relapse as of Day 243. CONCLUSIONS: Bortezomib was effective and durable for the treatment of this case of feline MM after failure with MP. Bortezomib was well-tolerated in this cat at a dose of 0.7 mg/m2, but not at 1.0 mg/m2. Bortezomib appears to be a drug worthy of further study for the treatment of feline MM.
  • Hiroyuki Tani, Ryo Miyamoto, Tomokazu Nagashima, Masaki Michishita, Kyoichi Tamura, Makoto Bonkobara
    Veterinary and Comparative Oncology 20(1) 109-117 2022年3月  査読有り最終著者責任著者
    Canine histiocytic sarcoma (HS) is an aggressive and highly metastatic neoplasm. Mutations in src homology 2 domain-containing phosphatase 2 (SHP2; encoded by PTPN11), which recently have been identified in canine HS tumour cells, could be attractive therapeutic targets for SHP099, an allosteric inhibitor of SHP2. Here, molecular characteristics of wild-type SHP2 and four SHP2 mutants (p.Ala72Gly, p.Glu76Gln, p.Glu76Ala and p.Gly503Val), including one that was newly identified in the present study, were investigated. Furthermore, in vivo effects of SHP099 on a HS cell line carrying SHP2 p.Glu76Ala were examined using a xenograft mouse model. While SHP2 Glu76 mutant cell lines and SHP2 wild-type/Gly503 mutant cell lines are highly susceptible and non-susceptible to SHP099, respectively, a cell line carrying the newly identified SHP2 p.Ala72Gly mutation exhibited moderate susceptibility to SHP099. Among recombinant wild-type protein and four mutant SHP2 proteins, three mutants (SHP2 p.Ala72Gly, p.Glu76Gln, p.Glu76Ala) were constitutively activated, while no activity was detected in wild-type SHP2 and SHP2 p.Gly503Val. Activities of these constitutively activated proteins were suppressed by SHP099; in particular, Glu76 mutants were highly sensitive. In the xenograft mouse model, SHP099 showed anti-tumour activity against a SHP2 p.Glu76Ala mutant cell line. Thus, there was heterogeneity in molecular characteristics among SHP2 mutants. SHP2 p.Glu76Ala and perhaps p.Glu76Gln, but not wild-type SHP2 or SHP2 p.Gly503Val, were considered to be oncogenic drivers targetable with SHP099 in canine HS. Further studies will be needed to elucidate the potential of SHP2 p.Ala72Gly as a therapeutic target of SHP099 in canine HS.
  • Hiroyuki Tani, Ryo Miyamoto, Syunya Noguchi, Sena Kurita, Tomokazu Nagashima, Masaki Michishita, Naoko Yayoshi, Kyoichi Tamura, Makoto Bonkobara
    BMC veterinary research 17(1) 147-147 2021年4月7日  査読有り最終著者責任著者
    BACKGROUND: Canine malignant melanoma is highly aggressive and generally chemoresistant. Toceranib is a kinase inhibitor drug that inhibits several tyrosine kinases including the proto-oncogene receptor tyrosine kinase KIT. Although canine malignant melanoma cells often express KIT, a therapeutic effect for toceranib has yet to be reported for this tumor, with only a small number of patients studied to date. This is a case report of a dog with malignant melanoma that experienced a transient response to toceranib. Furthermore, the KIT expressed in the tumor of this case was examined using molecular analysis. CASE PRESENTATION: A Shiba Inu dog presented with a gingival malignant melanoma extending into surrounding structures with metastasis to a submandibular lymph node. The dog was treated with toceranib (Palladia®; 2.6-2.9 mg/kg, orally, every other day) alone. Improvement of tumor-associated clinical signs (e.g., halitosis, tumor hemorrhage, trismus, and facial edema) with reduced size of the metastatic lymph node was observed on Day 15. The gingival tumor and associated masses in the masseter and pterygoid muscles decreased in size by Day 29 of treatment. Toceranib treatment was terminated on Day 43 due to disease progression and the dog died on Day 54. The tumor of this dog had a novel deletion mutation c.1725_1733del within KIT and the mutation caused ligand-independent phosphorylation of KIT, which was suppressed by toceranib. This mutation was considered to be an oncogenic driver mutation in the tumor of this dog, thereby explaining the anti-tumor activity of toceranib. CONCLUSIONS: This is the first report that presents a canine case of malignant melanoma that responded to toceranib therapy. KIT encoded by KIT harboring a mutation c.1725_1733del is a potential therapeutic target for toceranib in canine malignant melanoma. Further investigation of the KIT mutation status and toceranib therapy in canine malignant melanoma will need to be undertaken.

MISC

 15

担当経験のある科目(授業)

 3

共同研究・競争的資金等の研究課題

 21