研究者業績
基本情報
- 所属
- 日本獣医生命科学大学 獣医学部獣医学科 獣医生理学研究室 准教授
- 学位
- 博士(学術)(岡山大学)
- J-GLOBAL ID
- 200901023795463516
- researchmap会員ID
- 5000085515
研究分野
5経歴
4-
2016年4月 - 現在
-
2012年4月 - 2016年3月
-
2007年12月 - 2012年3月
-
2007年10月 - 2007年11月
学歴
3-
- 2007年
-
- 2004年
-
- 2002年
委員歴
2-
2023年 - 現在
-
2017年12月 - 2019年9月
受賞
1-
2009年11月
論文
28-
Mammalian Genome 2024年4月24日
-
International journal for parasitology. Parasites and wildlife 15 199-207 2021年8月 査読有りHyaloklossia Labbé ,1896 (Alveolata: Apicomplexa) is a monotypic genus of renal coccidia found in anurans, particularly in the edible frog Pelophylax kl. esculentus (Amphibia: Anura: Ranidae), distributed in different parts of Europe. Here we propose a new Hyaloklossia species from the Tokyo daruma pond frog, Pelophylax porosus porosus. The coccidium detected in the renal tissue of P. p. porosus shared some morphological characteristics with the type species, Hyaloklossia lieberkuehni (Labbé, 1894), reported from P. kl. esculentus. However, in addition to size differences in several oocyst and sporocyst features between these parasites, phylogenetic analysis of gene fragments from two nuclear ribosomal loci and the mitochondrial cytochrome c oxidase subunit 1, exposed distinct genetic differences between H. lieberkuehni and our new species. Although our analysis validated the monophyly of Hyaloklossia with some members of the Toxoplasmatinae Biocca, 1957, Cystoisosporinae Frenkel et al., 1987, and Eumonosporinae Chou et al., 2021 (Sarcocystidae Poche, 1913), comparison of genetic differences between Hyaloklossia species from P. p. porosus and H. lieberkuehni revealed the presence of a greater number of polymorphisms than that observed when comparing inter-species (Heydornia spp., Besnoisita spp.) or inter-genus (Toxoplasma vs. Neospora, Neospora vs. Hammondia, and Neospora vs. Heydornia) variabilities among members of the Sarcocystidae. This indicates that Hyaloklossia, as re-erected and defined by Modrý et al. (2001, Int. J. Syst. Evol. Microbiol. 51, 767-772), with its homoxenous life cycle, requires placement in its own subfamily. Thus, we propose a new subfamily, Hyaloklossiinae n. subfam., to accommodate two species, H. lieberkuehni from Europe and Hyaloklossia kasumienesis n. sp. which we describe here from P. p. porosus in Japan.
-
Biology 10(7) 2021年7月8日 査読有りThe kidneys participate in the regulation of systemic glucose metabolism via gluconeogenesis, insulin degradation, and the tubular reabsorption of glucose. The present study characterized rats from a strain of a novel type 2 diabetes model with enlarged kidneys (DEK). Histological and biochemical analyses of DEK rats were performed to assess the relationships between their kidneys and hyperglycemia. The kidney weight of diabetic DEK (DEK-DM) gradually increased over time from the onset of diabetes, with the glomerular number being higher in DEK-DM than in normal DEK (DEK-cont). A positive correlation between blood glucose level and kidney weight was observed in DEK-DM. The similar glomerular size and single glomerular creatinine clearance in DEK-cont and DEK-DM indicated that glomerular hypertrophy and hyperfiltration were not involved in the renal enlargement. Uninephrectomy (1/2Nx) in DEK-DM resulted in a reduction in blood glucose level at 7-28 post-operation days, with this concentration remaining lower than in Sham group until 84 days post-operation. 1/2Nx also improved systemic conditions, including reduced body weight gain, polyuria, polydipsia, and hyperphagia. Plasma concentrations of Na, total cholesterol, albumin, and total protein were higher, and urinary excretion of glucose, urea nitrogen, and proteins were lower, in the 1/2Nx than in the Sham group. Remnant kidney weight was two-fold higher in the 1/2Nx than in the Sham group 84 days later. In addition, 1/2Nx resulted in renal tubular dilatation but not in the progression of fibrosis or glomerular lesions. Taken together, these findings indicate that enlarged kidneys were associated with the onset of diabetes and with the resistance to diabetic nephropathy in DEK-DM.
-
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 69(4) 257-270 2021年4月 査読有りA well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
-
PloS one 16(5) e0251135 2021年 査読有り筆頭著者BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used to reduce hyperglycemia. The present study investigated the effects of a SGLT2 inhibitor, empagliflozin, on hyperglycemia in a novel rat model of non-obesity type 2 diabetes with enlarged kidney (DEK). METHODS: Male DEK rats with non-fasting blood glucose concentrations ≤300 mg/dl and >300 mg/dl were classified as nondiabetic and diabetic, respectively. Groups of nondiabetic (control) and diabetic (DM-cont) rats were fed standard chow for 12 weeks, whereas another group of diabetic (DM-empa) rats was fed standard chow containing empagliflozin (300 mg/kg/day) for 12 weeks. Blood glucose, body weight, glucose tolerance, food and water intake, urinary volume, plasma and urinary biochemical parameters, and bone mineral density were measured, and their kidneys and pancreas histologically analyzed. RESULTS: Treatment with empagliflozin reduced blood glucose concentration and food intake in diabetic rats, but inhibited loss of adeps renis and led to body weight gain. Empagliflozin attenuated polyuria and polydipsia but increased plasma concentrations of total cholesterol, sodium and total protein toward normal level. Empagliflozin also significantly reduced urinary excretion of proteins and electrolytes and restored bone mineral density and plasma concentrations of valine and isoleucine to normal levels. Moreover, dilation of renal tubules and kidney enlargement were not attenuated in the DM-empa group. CONCLUSION: The response of DEK rats to empagliflozin differed from that of other diabetic animal models, suggesting that DEK rats have unique characters for studying and evaluating the multiple biological effects of SGLT2 inhibitors. These findings also indicted that empagliflozin could ameliorate systemic metabolism and improve renal tubule function in diabetic condition.
-
International journal of molecular sciences 20(14) 2019年7月23日 査読有りWW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.
-
Journal of diabetes research 2019 8153140-8153140 2019年 査読有りA variety of animal models of diabetes mellitus (DM) are required to study the genetics and pathophysiology of DM. We established a novel rat strain showing nonobese type 2 diabetes with enlarged kidneys from the LEA.PET-pet congenic strain and named it Diabetes with Enlarged Kidney (DEK). The body growth of DEK affected rats was similar to that of normal rats before the development of DM but was attenuated with the deterioration of DM. There was a marked difference in the etiology of DEK by gender: DM phenotypes including polyuria, polydipsia, and hyperglycemia (nonfasting blood glucose over 300 mg/dl) were found in male rats aged over 10 weeks but not in female rats. The cumulative incidence of DM in DEK males at the age of 30 weeks was 44.8%. Oral glucose tolerance tests showed glucose intolerance and decreased insulin secretion in response to glucose loading in affected males, features which were exacerbated with age. Affected males exhibited disorganized architecture of pancreatic islets, decreased numbers of β cells, and markedly decreased expression of insulin, despite no pathological findings of hemorrhage or infiltration of inflammatory cells in the pancreatic islet. Age-related islet fibrosis appeared similar in normal and affected males. Affected males also showed enlarged kidneys with dilation of renal tubules in both the cortex and medulla, but no obvious glomerular lesions typical of diabetic nephropathy (DN) at the age of 30 weeks. Plasma levels of urea nitrogen and creatinine were normal, but hypoalbuminemia was detected. These pathophysiological features in affected males indicated that their renal function was almost maintained despite severe DM. Taken together, these findings indicate that the affected males of the DEK strain are a novel nonobese type 2 diabetes rat model useful for studying the mechanisms underlying β cell loss and identifying genetic factors protective against DN.
-
Biochemical and biophysical research communications 499(3) 459-465 2018年5月15日 査読有り筆頭著者Extracellular matrix (ECM) constitutes a proper micro-environment for cell proliferation, migration and differentiation, as well as playing pivotal roles in developmental processes including endochondral ossification. Cartilage ECM is mainly composed of fibrous proteins, including collagen, proteoglycan, and hyaluronan. Because almost all ECM components are transported by intracellular vesicular transport systems, molecules that mediate vesicle transport are also important for endochondral ossification. Giantin, encoded by the Golgb1 gene, is a tethering factor for coatomer 1 (COPI) vesicles and functions in the cis-medial Golgi compartments. An insertion mutation in the Golgb1 gene, resulting in a lack of giantin protein expression, has been detected in ocd/ocd rats that exhibit a pleiotropic phenotype including osteochondrodysplasia. To reveal the function of giantin in chondrogenesis, the present study assessed the effects of loss of giantin expression on cartilage ECM and Golgi morphology. Giantin was expressed in normal, but not in ocd/ocd, chondrocytes in the epiphyseal areas of embryonic femurs, whereas GM130 was expressed in both normal and ocd/ocd chondrocytes. The staining intensities of safranin O and azan (aniline blue) were reduced and enhanced, respectively, in epiphyseal cartilage of ocd/ocd femurs. Immunostaining showed that levels of type II collagen and fibronectin were comparable in normal and ocd/ocd cartilage. Levels of type XI collagen were higher, while levels of aggrecan, link protein and hyaluronan were lower, in ocd/ocd than in normal cartilage, although semi-quantitative RT-PCR showed similar levels of type XI collagen, aggrecan and link protein mRNAs in normal and ocd/ocd cartilage. Isolated chondrocytes of ocd/ocd and normal rats showed similar immunostaining patterns for cis-, medial-, and trans-Golgi marker proteins, whereas monolayers of ocd/ocd chondrocytes showed reduced levels of aggrecan and link protein and increased level of type XI collagen in spite of similar transcripts levels. These findings suggest that giantin plays a pivotal role in coordinated production of aggrecan, link protein and type XI collagen in chondrocytes, and that loss of giantin causes osteochondrodysplasia with disturbance of these ECM components.
-
Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie 69(5) 245-258 2017年6月14日 査読有りA congenital reduction in the number of nephrons is a critical risk factor for both onset of chronic kidney disease (CKD) and its progression to end-stage kidney disease (ESKD). Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and show progressive CKD. This study used an immunohistological method to assess glomerular and interstitial pathogenesis in male HPK rats aged 35-210days. CD68 positive-macrophages were found to infiltrate into glomeruli in HPK rats aged 35 and 70days and to infiltrate into interstitial tissue in rats aged 140 and 210days. HPK rats aged 35 and 70days showed glomerular hypertrophy, loss of normal linear immunostaining of podocine, and increased expression of PDGFr-β, TGF-β, collagens, and fibronectin, with all of these alterations gradually deteriorating with age. α-SMA-positive myofibroblasts were rarely detected in glomerular tufts, whereas α-SMA-positive glomerular parietal epithelium (GPE) cells were frequently observed along Bowman's capsular walls. The numbers of PDGFr-β-positive fibroblasts in interstitial tissue were increased in rats aged 35days and older, whereas interstitial fibrosis, characterized by the increased expression of tubular PDGF-BB, the appearance of myofibroblasts doubly positive for PDGFr-β and α-SMA, and increased expression of collagens and fibronectin, were observed in rats aged 70 and older. These results clearly indicate that congenital CKD with only 20% of nephrons cause renal fibrosis in rats.
-
Biochemical and biophysical research communications 486(4) 958-964 2017年5月13日 査読有りMale hypogonadism (hgn/hgn) rats show testicular hypoplasia accompanied by dysplastic development of seminiferous tubules due to loss-of-function mutation of the gene encoding Astrin, which is required for mitotic progression in the division cycle of HeLa cells. In the present study, we examined the cytological base leading to the decrease of Sertoli cells in hgn/hgn testes. In hgn/hgn testes on postnatal day 3, anti-phospho-histone H3 (Ser10) (pH3)-positive mitotic phase and TUNEL-positive apoptosis increased in GATA4-positive Sertoli cells. Isolated immature Sertoli cells from hgn/hgn testes showed increased pH3-assessed mitotic index accompanied by decreased 5-bromo-2'-deoxyuridine-incorporation and increased TUNEL-positive apoptosis, suggesting mitotic delay and cell death. In the visualization of mitotic progression by nocodazole (NOC)-mediated cell cycle arrest and subsequent release, hgn/hgn rat-derived Sertoli cells failed to make the transition from prometaphase to metaphase, and the cells with micronuclei and TUNEL-positive cells gradually increased in a time-dependent manner. Western blot analysis detected ≈142 kDa protein expected as Astrin in extracts of +/+ and +/hgn testes and cultured normal Sertoli cells but not in extracts of hgn/hgn testes. CLASP1 was detected in extracts of both normal and hgn/hgn testes, whereas it was localized in kinetochore of normal mitotic Sertoli cells but diffused in cytoplasm of hgn/hgn Sertoli cells. These results indicate that Astrin is required for normal mitotic progression in immature Sertoli cells and that the most severe type of testicullar dysplasia in hgn/hgn rats is caused by mitotic cell death of immature Sertoli cells due to lack of Astrin.
-
Congenital anomalies 56(4) 172-9 2016年7月 査読有りHomeobox genes play important roles in craniofacial morphogenesis. However, the characteristics of the transcription factor Hoxc during palate formation remain unclear. We examined the immunolocalization patterns of Hoxc5, Hoxc4, and Hoxc6 in palatogenesis of cleft palate (Eh/Eh) mice. On the other hand, mutations in the FGF/FGFR pathway are exclusively associated with syndromic forms of cleft palate. We also examined the immunolocalization of Fgfr1 and Erk1/2 to clarify their relationships with Hoxc in palatogenesis. Some palatal epithelial cells showed Hoxc5 labeling, while almost no labeling of mesenchymal cells was observed in +/+ mice. As palate formation progressed in +/+ mice, Hoxc5, Hoxc4, and Hoxc6 were observed in medial epithelial seam cells. Hoxc5 and Hoxc6 were detected in the oral epithelium. The palatal mesenchyme also showed intense staining for Fgfr1 and Erk1/2 with progression of palate formation. In contrast, the palatal shelves of Eh/Eh mice exhibited impaired horizontal growth and failed to fuse, resulting in a cleft. Hoxc5 was observed in a few epithelial cells and diffusely in the mesenchyme of Eh/Eh palatal shelves. No or little labeling of Fgfr1 and Erk1/2 was detected in the cleft palate of Eh/Eh mice. These findings suggest that Hoxc genes are involved in palatogenesis. Furthermore, there may be the differences in the localization pattern between Hoxc5, Hoxc4, and Hoxc6. Additionally, Hoxc distribution in palatal cells during palate development may be correlated with FGF signaling. (228/250 words) © 2016 Japanese Teratology Society.
-
Comparative medicine 66(1) 10-20 2016年2月 査読有りRenal hypoplasia due to a congenitally reduced number of nephrons progresses to chronic kidney disease and may cause renal anemia, given that the kidneys are a major source of erythropoietin in adults. Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and develop CKD. This study assessed the renal function and hematologic changes in HPK rats from 70 to 210 d of age. HPK rats demonstrated deterioration of renal excretory function, slightly macrocytic erythropenia at all days examined, age-related increases in splenic hemosiderosis accompanied by a tendency toward increased hemolysis, normal plasma erythropoietin levels associated with increased hepatic and decreased renal erythropoietin production, and maintenance of the response for erythropoietin production to hypoxic conditions, with increased interstitial fibrosis at 140 d of age. These results indicate that increases in splenic hemosiderosis and the membrane fragility of RBC might be associated with erythropenia and that hepatic production of erythropoietin might contribute to maintaining the blood Hgb concentration in HPK rats.
-
Experimental animals 63(1) 11-9 2014年 査読有りThe development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs.
-
2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS) 2014年 査読有りThe dielectric property values of biological tissues are used for the safety analysis and development of medical applications. A previous study conducted by Gabriel et al. has provided reference dielectric databases. To the best of our knowledge, no other databases have been constructed that allow a comprehensive measurement to be conducted with such a large number of tissues and organs. To this end, we present the development of a novel database for adaptation to recent research, permitting the validation of measured dataset by Gabriel et al. In this paper, we introduce measurement systems for further developing the database and summarize our findings with a discussion on the remaining challenges.
-
Journal of cell science 126(Pt 22) 5189-97 2013年11月15日 査読有りThe correct formation of primary cilia is central to the development and function of nearly all cells and tissues. Cilia grow from the mother centriole by extension of a microtubule core, the axoneme, which is then surrounded with a specialized ciliary membrane that is continuous with the plasma membrane. Intraflagellar transport moves particles along the length of the axoneme to direct assembly of the cilium and is also required for proper cilia function. The microtubule motor, cytoplasmic dynein-2 mediates retrograde transport along the axoneme from the tip to the base; dynein-2 is also required for some aspects of cilia formation. In most cells, the Golgi lies adjacent to the centrioles and key components of the cilia machinery localize to this organelle. Golgi-localized proteins have also been implicated in ciliogenesis and in intraflagellar transport. Here, we show that the transmembrane Golgi matrix protein giantin (GOLGB1) is required for ciliogenesis. We show that giantin is not required for the Rab11-Rabin8-Rab8 pathway that has been implicated in the early stages of ciliary membrane formation. Instead we find that suppression of giantin results in mis-localization of WDR34, the intermediate chain of dynein-2. Highly effective depletion of giantin or WDR34 leads to an inability of cells to form primary cilia. Partial depletion of giantin or of WDR34 leads to an increase in cilia length consistent with the concept that giantin acts through dynein-2. Our data implicate giantin in ciliogenesis through control of dynein-2 localization.
-
The Journal of biological chemistry 288(44) 31830-41 2013年11月1日 査読有りSkeletal fusions with sterility (sks) is an autosomal recessive mutation of mouse that results in male and female sterility because of defects in gametogenesis. The mutants also have skeletal malformations with fused vertebrae and ribs. We examined testicular phenotypes of sks/sks mice to investigate the defects in spermatogenesis. Histological and immunocytochemical analyses and expression analyses of the marker genes demonstrated that spermatogenesis is arrested at mid to late pachytene stage of meiotic prophase with defective synapsis of the homologous chromosomes. Next, we determined the precise chromosomal localization of the sks locus on a 0.3-Mb region of mouse chromosome 4 by linkage analysis. By sequencing the positional candidate genes in this region and whole exome sequencing, we found a GG to TT nucleotide substitution in exon 6 of the Tmem48 gene that encodes a putative transmembrane protein with six transmembrane domains. The nucleotide substitution causes aberrant splicing, which deletes exon 6 of the Tmem48 transcript. Specific expression of TMEM48 was observed in germ cells of males and females. Furthermore, the phenotypes of the sks mutant were completely rescued by the transgenesis of a genomic fragment containing the wild-type Tmem48 gene. These findings indicate that the Tmem48 mutation is responsible for the gametogenesis defects and skeletal malformations in the sks mice. The TMEM48 protein is a nuclear membrane protein comprising the nuclear pore complex; its exact function in the nuclear pore complex is still unknown. Our finding suggested that the nuclear pore complex plays an important role in mammalian gametogenesis and skeletal development.
-
ANDROLOGY 1(2) 301-307 2013年3月 査読有り筆頭著者Male hypogonadic (hgn/hgn) rats show male sterility, reduced female fertility, progressive renal insufficiency and body growth retardation. These defects are associated with loss-of-function mutation of astrin and appear to be related to organ hypoplasia resulting from abnormal cell proliferation and increased cell death during embryonic and early postnatal development. As targeted disruption of mouse spag5 (astrin ortholog) has been reported to show no phenotype, we performed rescue experiments based on the introduction of rat astrin cDNA transgene into hgn/hgn rats to determine whether astrin is actually necessary for the establishment of normal male fertility and renal function. Astrin transgenic (Tg) rats were mated with hgn/+ rats of the HGN strain, and Tg-hgn/+ rats were then crossed to obtain Tg-hgn/hgn. Tg-hgn/hgn males showed recovery of body growth, fertility and renal function. Testis size was smaller in these transgenic animals than normal controls, but showed an increase by 16.5-fold compared with hgn/hgn males. Spermatogenesis occurred in Tg-hgn/hgn testes, and their accessory reproductive organs were of approximately normal size. hgn/hgn males show hypergonadotropic hypogonadism. Increased testosterone and decreased LH levels in Tg-hgn/hgn serum indicated the recovery of Leydig cells' function. Tg-hgn/hgn males showed normal reproductive behaviour, and their mating with Tg-hgn/hgn females produced pups in normal litter size. Their renal sizes and glomerular numbers showed complete recovery, and renal function assayed by biochemical parameters was normal. These results indicated that the transgene is functional in the testis and kidney development as well as body growth. In conclusion, astrin is necessary for the establishment of normal size (cell number) and function of the testis and kidney in rats.
-
BioMed research international 2013 760236-760236 2013年 査読有りPalatogenesis is directed by epithelial-mesenchymal interactions and results partly from remodeling of the extracellular matrix (ECM) of the palatal shelves. Here, we assessed heparanase distribution in developing mouse palates. No heparanase was observed in the vertically oriented palatal shelves in early stages of palate formation. As palate formation progressed, the palatal shelves were reorganized and arranged horizontally above the tongue, and heparanase localized to the epithelial cells of these shelves. When the palatal bilateral shelves first made contact, the heparanase localized to epithelial cells at the tips of shelves. Later in fusing palatal shelves, the cells of the medial epithelial seam (MES) were labeled with intense heparanase signal. In contrast, the basement membrane heparan sulfate (HS) was scarcely observed in the palatal shelves in contact. Moreover, perlecan labeling was sparse in the basement membrane of the MES, on which laminin and type IV collagen were observed. Moreover, we assessed the distribution of matrix metalloproteinase- (MMP-) 9, MMP-2, and MMP-3 in developing mouse palates and these MMPs were observed in the MES. Our findings indicated that heparanase was important for palate formation because it mediated degradation of the ECM of palatal shelves. Heparanase may, in concert with other proteases, participate in the regression of the MES.
-
Bone 49(5) 1027-36 2011年11月 査読有り筆頭著者Homozygous rats (ocd/ocd) of a mutant inbred strain, OCD (osteochondrodysplasia), show osteochondrodysplasia, systemic edema, cleft palate, protruding tongue, disproportionate dwarfism, and lethality immediately after birth. Their epiphyses show decreased levels of glycosaminoglycans and weak staining for extracellular matrix proteins. The epiphyseal chondrocytes have large vesicles and expanded endoplasmic reticulum and Golgi apparatus. These phenotypic features are inherited in an autosomal recessive manner, and the ocd locus responsible for these phenotypes has been mapped close to D11Mgh3 on rat chromosome 11. In the present study, we characterized the embryonic pathogenesis of ocd/ocd rats and identified the mutant gene. Subcutaneous edema in the dorsal portion was found at embryonic day (E) 16.5, and the other anomalies described above were apparent after E18.5 in ocd/ocd. Whole mount immunohistochemistry for Sox9 revealed that mesenchymal condensation was delayed in limb bud in ocd/ocd, and skeletal preparation showed that the progression of whole-body chondrogenesis was delayed in ocd/ocd. Histological and immunohistological analyses of the femur showed that cell proliferations of resting and proliferative zones of growth plate were significantly reduced in ocd/ocd embryos. Fine linkage mapping localized the ocd locus within 84kb of positions 65,584-65,668kb containing a part of Golgb1 gene on chromosome 11. Expression of Golgb1 mRNA was found in limb buds, somite derivatives and calvaria. Sequence analysis identified a 10-bp insertion in exon 13 of the Golgb1 gene in ocd/ocd rats. The Golgb1 gene encodes the COPI vesicle tethering factor, giantin. This insertion mutation causes a frame shift, and introduces a premature termination codon at codon 1082, leading to truncation of the C-terminal two thirds of giantin. By in-gel Western analysis using anti-giantin antibody that recognizes an epitope within 200 aa of the C-terminus, the expression of giantin was not detected in ocd/ocd embryos. As the C-terminal region of giantin is required for localization to the Golgi apparatus, these results strongly suggested that giantin is functionally defective in ocd/ocd rats. Therefore, we concluded that mutation of the Golgb1 gene is responsible for the phenotypic characteristics including osteochondrodysplasia of ocd/ocd, and that giantin plays a pivotal role in multiple aspects of chondrogenesis.
-
The Journal of veterinary medical science 73(6) 787-95 2011年6月 査読有りAffected rats of the unilateral urogenital anomalies (UUA) strain show renal agenesis restricted to the left side. To determine whether unilateral renal agenesis is a risk factor for the progression of renal insufficiency, we studied age-related pathophysiological alterations in affected rats. Although body growth and food intake were normal, polydipsia and polyuria with low specific gravity were present at 10 weeks and deteriorated further with age. Blood hemoglobin concentrations were normal, though there was slight erythropenia with increased MCV and MCH. Although hypoalbuminemia, hypercholesterolemia, azotemia, and hypermagnesemia were manifested after age 20 weeks, neither hyperphosphatemia nor hypocalcemia was observed. Plasma Cre and UN concentrations gradually increased with age. Cre clearance was almost normal, whereas fractional UN excretion was consistently lower than normal. Proteinuria increased with age, and albumin was the major leakage protein. In addition to cortical lesions, dilated tubules, cast formation, and interstitial fibrosis were observed in the renal medulla of 50 week-old affected rats. Renal weight was increased 1.7-fold and glomerular number 1.2-fold compared with normal rats. These findings show that the remaining kidney in UUA rats is involved not only in compensatory reactions but experiences pathophysiological alterations associated with progressive renal insufficiency.
-
The Journal of veterinary medical science 73(4) 495-9 2011年4月 査読有りThe petit rat (pet/pet) is a new semi-lethal dwarf mutant with anomalies in the thymus and testes, defects inherited as a single autosomal recessive trait. At birth, these pet/pet rats show low birth weight and extremely small thymuses; at 140 days of age, their thymuses show abnormal involution. In the present study, we examined early postnatal development of hypoplastic pet/pet thymuses. In addition to being hypoplastic at birth, pet/pet thymus growth was almost completely impaired during the early postnatal period. As shown by cellular incorporation of BrdU, the mitotic activity was lower in pet/pet than in normal thymuses, and terminal deoxynucleotidyl transferase dUTP nick end labeling assays showed that apoptosis occurred more often in pet/pet than in normal thymus cells during the first few days after birth. These results indicate that postnatal development of the hypoplastic pet/pet thymus is defective due to the reduced proliferation and increased apoptosis of thymic cells.
-
GENES BRAIN AND BEHAVIOR 8(7) 650-660 2009年10月 査読有りThe lde/lde rat is characterized by dwarfism, postnatal lethality, male hypogonadism, a high incidence of epilepsy and many vacuoles in the hippocampus and amygdala. We used a candidate approach to identify the gene responsible for the lde phenotype and assessed the susceptibility of lde/lde rats for audiogenic seizures. Following backcross breeding of lethal dwarfism with epilepsy (LDE) to Brown Norway rats, the lde/lde rats with an altered genetic background showed all pleiotropic phenotypes. The lde locus was mapped to a 1.5-Mbp region on rat chromosome 19 that included the latter half of the Wwox gene. Sequencing of the full-length Wwox transcript identified a 13-bp deletion in exon 9 in lde/lde rats. This mutation causes a frame shift, resulting in aberrant amino acid sequences at the C-terminal. Western blotting showed that both the full-length products of the Wwox gene and its isoform were present in normal testes and hippocampi, whereas both products were undetectable in the testes and hippocampi of lde/lde rats. Sound stimulation induced epileptic seizures in 95% of lde/lde rats, with starting as wild running (WR), sometimes progressing to tonic-clonic convulsions. Electroencephalogram (EEG) analysis showed interictal spikes, fast waves during WR and burst of spikes during clonic phases. The Wwox protein is expressed in the central nervous system (CNS), indicating that abnormal neuronal excitability in lde/lde rats may be because of a lack of Wwox function. The lde/lde rat is not only useful for understanding the multiple functions of Wwox but is also a unique model for studying the physiological function of Wwox in CNS.
-
BMC genetics 10 60-60 2009年9月22日 査読有り筆頭著者BACKGROUND: Koala (Koa) is a dominant mutation in mice causing bushy muzzle and pinna, and is associated with a chromosomal inversion on the distal half of chromosome 15. To identify the gene responsible for the Koa phenotypes, we investigated phenotypes of Koa homozygous mice and determined the breakpoints of the inversion with a genetic method using recombination between two different chromosomal inversions. RESULTS: Skeletal preparation of Koa homozygotes showed marked deformity of the ribs and a wider skull with extended zygomatic arches, in addition to a general reduction in the lengths of long bones. They also had open eyelids at birth caused by a defect in the extension of eyelid anlagen during the embryonic stages. The proximal and distal breakpoints of the Koa inversion were determined to be 0.8-Mb distal to the Trsps1 gene and to 0.1-Mb distal to the Hoxc4 gene, respectively, as previously reported. The phenotypes of mice with the recombinant inverted chromosomes revealed the localization of the gene responsible the Koa phenotype in the vicinity of the proximal recombinant breakpoint. Expression of the Trsps1 gene in this region was significantly reduced in the Koa homozygous and heterozygous embryos. CONCLUSION: While no gene was disrupted by the chromosomal inversion, an association between the Koa phenotype and the proximal recombinant breakpoint, phenotypic similarities with Trps1-deficient mice or human patients with TRSP1 mutations, and the reduced expression of the Trsps1 gene in Koa mice, indicated that the phenotypes of the Koa mice are caused by the altered expression of the Trps1 gene.
-
The Journal of reproduction and development 54(2) 122-8 2008年4月 査読有りRepro34 is an N-ethyl-N-nitrosourea (ENU)-induced mutation in mice showing male-specific infertility caused by defective spermatogenesis. In the present study, we investigated pathogenesis and molecular lesions in relation to spermatogenesis in the repro34/repro34 homozygous mouse. Histological examination of the testis showed that the seminiferous epithelium of the repro34/repro34 mouse contained spermatogonia and spermatocytes but no round and elongating spermatids. Instead of these haploid cells, multinucleated giant cells occupied the niche of the seminiferous tubules. Immunohistochemical staining for Hsc70t, an elongating spermatid specific protein, confirmed the absence of elongating spermatids. Furthermore, RT-PCR showed that there were significantly reduced expressions of the marker genes specifically expressed in the spermatid and that there was no difference in the expressions of the spermatocyte specific marker genes. These findings indicated interruption of the spermatogenesis during transition from the spermatocyte to spermatid in the repro34/repro34 mouse. The repro34 locus has been mapped on a 7.0-Mb region of mouse chromosome 5 containing the Syntaxin 2/Epimorphin (Stx2/Epim) gene, and targeted disruption of this gene has been reported to cause defective spermatogenesis. We therefore sequenced the entire coding region of the Stx2/Epim gene and found a nucleotide substitution that results in a nonsense mutation of this gene. The expression pattern of the Stx2/Epim gene during the first wave of spermatogenesis, increased expression at later stages of spermatogenesis, was in agreement with the affected phase of spermatogenesis in the adult repro34/repro34 testis. We therefore concluded that the male infertility of the repro34/repro34 mouse is caused by the interruption of spermatogenesis during transition from the spermatocyte to spermatid and that the nonsense mutation of the Stx2/Epim gene is responsible for the interruption of spermatogenesis.
-
Experimental animals 57(1) 73-7 2008年1月 査読有りKoala (Koa) and hairy ears (Eh) mutations of mice are associated with chromosomal inversions in the distal half of chromosome 15. Since these two mutant mice show some common phenotypic features including extra hair on pinna and craniofacial dysmorphogenesis and have similar inverted regions, we determined the inverted regions of these two chromosomal inversions to examine whether a common gene is responsible for the phenotypes of these two mutants. The inverted regions were identified as the recombination-suppressed regions by linkage analysis. The length of the recombination-suppressed regions of Koa and Eh were approximately 52 and 47 Mb, respectively, and these inverted regions were not the same. These results indicate that the phenotypes of Koa and Eh mutant mice are likely to be caused by different genes.
-
JOURNAL OF HEREDITY 98(6) 575-580 2007年9月 査読有りShort-limbed dwarfism (SLW) is a new mutant mouse characterized by a dwarf phenotype with markedly short body, limbs, and tail. In the present study, we investigated the skeletal phenotypes of the SLW mouse and determined the chromosomal localization to identify the gene responsible for the phenotypes (s/w). Skeletal preparations stained with alcian blue and alizarin red revealed that longitudinal growth of the extremities of the affected (s/w/s/w) mice was significantly reduced in comparison with that of normal mice, whereas the positions and numbers of skeletal elements were normal. Histological examination of tibial growth plates of the affected mice showed that the numbers of proliferating and hypertrophic chondrocytes were obviously diminished. These phenotypes resembled to those of human chondrodysplasias caused by defective chondrocyte proliferation and differentiation. We mapped the s/w locus on an 11.7-cM interval of the proximal region of mouse chromosome 4 by linkage analysis. Furthermore, allelism test using Npr2(cn) locus, a mutant allele of Npr2 gene encoding a natriuretic peptide receptor B, revealed that s/w locus is an allele of the Npr2 gene. These results suggest that the dwarf phenotype of the SLW mouse is caused by the disturbed endochondral ossification, and a mutation in the Npr2 gene is expected to be responsible for the phenotypes of the SLW mouse.
-
Mammalian genome : official journal of the International Mammalian Genome Society 18(4) 246-54 2007年4月 査読有り筆頭著者The hairy ears (Eh) mutation in the mouse originated from neutron irradiation experiments and is associated with chromosomal inversion on chromosome 15. Eh/+ mice have small pinna and extra hairs on the pinna but the phenotypic features of Eh/Eh mice are unclear. In this study we found that Eh/Eh mice died shortly after birth and had a cleft palate caused by impaired growth of palate shelves. Because genes located on the breakpoints of inversion are likely to be responsible for the defects associated with chromosomal inversions, we determined the breakpoints of the Eh inversion. We used a new genetic method that uses recombinant chromosomes resulting from crossing over between two overlapping inversions to determine the breakpoints. Koa is a mouse mutation associated with inversion of chromosome 15, which partially overlaps with the Eh inversion. We made Eh +/+ Koa double heterozygotes and obtained the recombinant chromosomes possessing deletion and duplication of the regions flanked by the breakpoints of both inversions, which were generated by crossing over within the overlapped region of these inversions. By defining the deleted regions we identified the breakpoints of the Eh inversion. We then examined the expression of genes in the vicinities of the breakpoints and found ectopic expression of the Hoxc5 gene and a transcript with unknown function in the developing palate of Eh/Eh mice, which is likely to be responsible for the cleft palate.
-
Experimental animals 55(5) 491-5 2006年10月 査読有りThe WS4 mouse is an animal model for human Waardenburg syndrome type 4 (WS4), showing pigmentation anomalies, deafness and megacolon, which are caused by defects of neural crest-derived cells. We have previously reported that the gene responsible for the WS4 mouse is an allele of the piebald mutations of the endothelin B receptor gene (Ednrb). In this study, we examined the genomic sequence of the Ednrb gene in WS4 mice and found a 598-bp deletion in the gene. The deleted region contains the entire region of exon 2 and the 5' part of exon 3 and is flanked by inverted repeat sequences which are suggested to trigger the deletion. We concluded that the deletion in the Ednrb gene is the causative mutation for the phenotype of WS4 mice.
書籍等出版物
1講演・口頭発表等
32担当経験のある科目(授業)
10-
- 現在獣医遺伝・動物育種学 (日本獣医生命科学大学)
-
- 現在総合獣医学(獣医生理学担当) (日本獣医生命科学大学)
-
- 現在大学院特別講義 (日本獣医生命科学大学)
-
- 現在獣医生理学 (日本獣医生命科学大学)
-
獣医遺伝育種学 (東京農工大学)
共同研究・競争的資金等の研究課題
6-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2014年4月 - 2018年3月
-
日本学術振興会 科学研究費助成事業 若手研究(B) 2014年4月 - 2016年3月
-
日本学術振興会 科学研究費助成事業 若手研究(B) 2009年 - 2011年
-
日本学術振興会 科学研究費助成事業 若手研究(スタートアップ) 2008年 - 2009年