研究者業績

伊豆 弥生

イズ ヤヨイ  (Yayoi Izu)

基本情報

所属
日本獣医生命科学大学 獣医学部 獣医学科 教授

J-GLOBAL ID
202001015850591109
researchmap会員ID
R000006432

論文

 43
  • Kiyotaka Arai, Fumiyo Saito, Masashi Miyazaki, Haruto Kushige, Yayoi Izu, Noritaka Maeta, Kazuaki Yamazoe
    International Journal of Molecular Sciences 24(21) 15804-15804 2023年10月31日  
    Several methods have been developed to generate neurons from other cell types for performing regeneration therapy and in vitro studies of central nerve disease. Small molecules (SMs) can efficiently induce neuronal features in human and rodent fibroblasts without transgenes. Although canines have been used as a spontaneous disease model of human central nerve, efficient neuronal reprogramming method of canine cells have not been well established. We aimed to induce neuronal features in adult canine dermal fibroblasts (ACDFs) by SMs and assess the permanency of these changes. ACDFs treated with eight SMs developed a round-shaped cell body with branching processes and expressed neuronal proteins, including βIII-tubulin, microtubule-associated protein 2 (MAP2), and neurofilament-medium. Transcriptome profiling revealed the upregulation of neuron-related genes, such as SNAP25 and GRIA4, and downregulation of fibroblast-related genes, such as COL12A1 and CCN5. Calcium fluorescent imaging demonstrated an increase in intracellular Ca2+ concentration upon stimulation with glutamate and KCl. Although neuronal features were induced similarly in basement membrane extract droplet culture, they diminished after culturing without SMs or in vivo transplantation into an injured spinal cord. In conclusion, SMs temporarily induce neuronal features in ACDFs. However, the analysis of bottlenecks in the neuronal induction is crucial for optimizing the process.
  • Mengjie Zhu, Fabian Metzen, Mark Hopkinson, Janina Betz, Juliane Heilig, Jassi Sodhi, Thomas Imhof, Anja Niehoff, David E. Birk, Yayoi Izu, Marcus Krüger, Andrew A. Pitsillides, Janine Altmüller, Gerjo J.V.M. van Osch, Volker Straub, Gudrun Schreiber, Mats Paulsson, Manuel Koch, Bent Brachvogel
    iScience 26(7) 107225-107225 2023年7月  
  • Megumi Furuhata‐Yoshimura, Tomomi Yamaguchi, Yayoi Izu, Tomoki Kosho
    American Journal of Medical Genetics Part A 191(10) 2631-2639 2023年6月23日  
    Abstract Myopathic Ehlers‐Danlos syndrome (mEDS) is a subtype of EDS that is caused by abnormalities in COL12A1. Up‐to‐date, 24 patients from 15 families with mEDS have been reported, with 14 families showing inheritance in an autosomal dominant manner and one family in an autosomal recessive manner. We encountered an additional patient with autosomal recessive mEDS. The patient is a 47‐year‐old Japanese man, born to consanguineous parents with no related features of mEDS. After birth, he presented with hypotonia, weak spontaneous movements, scoliosis, and torticollis. He had soft palms but no skin hyperextensibility or fragility. Progressive scoliosis, undescended testes, and muscular torticollis required surgery. During adulthood, he worked normally and had no physical concerns. Clinical exome analysis revealed a novel homozygous variant in COL12A1 (NM_004370.6:c.395‐1G > A) at the splice acceptor site of exon 6, leading to in‐frame skipping of exon 6. The patient was diagnosed with mEDS. The milder manifestations in the current patient compared with previously reported patients with mEDS might be related to the site of the variant. The variant is located in the genomic region encoding the first von Willebrand factor A domain, which affects only the long isoform of collagen XII, in contrast to the variants in previously reported mEDS patients that affected both the long and short isoforms. Further studies are needed to delineate comprehensive genotype–phenotype correlation of the disorder.
  • Yayoi Izu, David E. Birk
    Frontiers in Cell and Developmental Biology 11 2023年3月2日  
    Collagen XII, a fibril-associated collagen with interrupted triple helices (FACIT), influences fibrillogenesis in numerous tissues. In addition to this extracellular function, collagen XII also directly regulates cellular function. Collagen XII is widely expressed in connective tissues, particularly tendons, ligaments, and the periodontium and periosteum, where it is enriched in the pericellular regions. Mutations in the collagen XII gene cause myopathic Ehlers-Danlos syndrome (mEDS), an early-onset disease characterized by overlapping connective tissue abnormalities and muscle weakness. Patients with mEDS exhibit delayed motor development, muscle weakness, joint laxity, hypermobility, joint contractures, and abnormal wound healing. A mEDS mouse model was generated by deletion of the Col12a1 gene, resulting in skeletal and muscle abnormalities with disorganized tissue structures and altered mechanical properties. Extracellularly, collagen XII interacts with collagen I fibrils and regulates collagen fibril spacing and assembly during fibrillogenesis. Evidence for the binding of collagen XII to other EDS-related molecules (e.g., decorin and tenascin X) suggests that disruption of ECM molecular interactions is one of the causes of connective tissue pathology in mEDS. Collagen XII also has been shown to influence cell behavior, such as cell shape and cell-cell communication, by providing physical connection between adjacent cells during tissue development and regeneration. The focus of this review is on the functions of collagen XII in development, regeneration, and disease.
  • Shuhei Kajikawa, Yoichi Ezura, Yayoi Izu, Kazuhisa Nakashima, Masaki Noda, Akira Nifuji
    Journal of Bone and Mineral Metabolism 40(4) 561-570 2022年4月15日  
  • Shin Fukusato, Masashi Nagao, Kei Fujihara, Taiju Yoneda, Kiyotaka Arai, Manuel Koch, Kazuo Kaneko, Muneaki Ishijima, Yayoi Izu
    Journal of clinical medicine 10(18) 4051-4051 2021年9月7日  
    Anterior cruciate ligament (ACL) rupture is a common knee injury for athletes. Although surgical reconstruction is recommended for the treatment of ACL ruptures, 100% functional recovery is unlikely. Therefore, the discovery of risk factors for ACL ruptures may prevent injury. Several studies have reported an association between polymorphisms of the collagen XII gene COL12A1 and ACL rupture. Collagen XII is highly expressed in tendons and ligaments and regulates tissue structure and mechanical property. Therefore, we hypothesized that collagen XII deficiency may cause ACL injury. To elucidate the influence of collagen XII deficiency on ACL, we analyzed a mouse model deficient for Col12a1. Four- to 19-week-old male Col12a1-/- and wild-type control mice were used for gait analysis; histological and immunofluorescent analysis of collagen XII, and real-time RT-PCR evaluation of Col12a1 mRNA expression. The Col12a1-/- mice showed an abnormal gait with an approximately 2.7-fold increase in step angle, suggesting altered step alignment. Col12a1-/- mice displayed 20-60% ACL discontinuities, but 0% discontinuity in the posterior cruciate ligament. No discontinuities in knee ligaments were found in wild-type mice. Collagen XII mRNA expression in the ACL tended to decrease with aging. Our study demonstrates for the first time that collagen XII deficiency increases the risk of ACL injury.
  • Yayoi Izu, Sheila M. Adams, Brianne K. Connizzo, David P. Beason, Louis J. Soslowsky, Manuel Koch, David E. Birk
    Matrix Biology 2020年10月  査読有り筆頭著者責任著者
  • Jumpei Shirakawa, Shuhei Kajikawa, Ralph T Böttcher, Mercedes Costell, Yayoi Izu, Tadayoshi Hayata, Masaki Noda, Yoichi Ezura
    JBMR plus 3(6) e10130 2019年6月  査読有り
    Profilin 1 (Pfn1), a regulator of actin polymerization, controls cell movement in a context-dependent manner. Pfn1 supports the locomotion of most adherent cells by assisting actin-filament elongation, as has been shown in skeletal progenitor cells in our previous study. However, because Pfn1 has also been known to inhibit migration of certain cells, including T cells, by suppressing branched-end elongation of actin filaments, we hypothesized that its roles in osteoclasts may be different from that of osteoblasts. By investigating the osteoclasts in culture, we first verified that Pfn1-knockdown (KD) enhances bone resorption in preosteoclastic RAW264.7 cells, despite having a comparable number and size of osteoclasts. Pfn1-KD in bone marrow cells showed similar results. Mechanistically, Pfn1-KD osteoclasts appeared more mobile than in controls. In vivo, the osteoclast-specific conditional Pfn1-deficient mice (Pfn1-cKO) by CathepsinK-Cre driver demonstrated postnatal skeletal phenotype, including dwarfism, craniofacial deformities, and long-bone metaphyseal osteolytic expansion, by 8 weeks of age. Metaphyseal and diaphyseal femurs were drastically expanded with suppressed trabecular bone mass as indicated by μCT analysis. Histologically, TRAP-positive osteoclasts were increased at endosteal metaphysis to diaphysis of Pfn1-cKO mice. The enhanced movement of Pfn1-cKO osteoclasts in culture was associated with a slight increase in cell size and podosome belt length, as well as an increase in bone-resorbing activity. Our study, for the first time, demonstrated that Pfn1 has critical roles in inhibiting osteoclast motility and bone resorption, thereby contributing to essential roles in postnatal skeletal homeostasis. Our study also provides novel insight into understanding skeletal deformities in human disorders.
  • 梶川 修平, 白川 純平, 早田 匡芳, 伊豆 弥生, ベッチャー・ラルフ, 野田 政樹, 江面 陽一
    日本骨代謝学会学術集会プログラム抄録集 36回 157-157 2018年7月  
  • Wanting Lin, Yayoi Izu, Arayal Smriti, Makiri Kawasaki, Chantida Pawaputanon, Ralph T Böttcher, Mercedes Costell, Keiji Moriyama, Masaki Noda, Yoichi Ezura
    Journal of cellular physiology 233(1) 259-268 2018年1月  査読有り
    Osteocytes are the most abundant cells in bone and regulate bone metabolism in coordination with osteoblasts and osteoclasts. However, the molecules that control osteocytes are still incompletely understood. Profilin1 is an actin-binding protein that is involved in actin polymerization. Osteocytes possess characteristic dendritic process formed based on actin cytoskeleton. Here, we examined the expression of profilin1 and its function in osteocytes. Profilin1 mRNA was expressed in osteocytic MLO-Y4 cells and its levels were gradually increased along with the time in culture. With regard to functional aspect, knockdown of profilin1 by siRNA enhanced BMP-induced increase in alkaline phosphatase expression levels in MLO-Y4 cells. Profilin1 knockdown suppressed the levels of dendritic processes and migration of MLO-Y4 cells. Since aging causes an increase in ROS in the body, we further examined the effects of hydrogen peroxide on the expression of profilin1. Hydrogen peroxide treatment increased the levels of profilin1 mRNA in MLO-Y4 cells in contrast to the decline in alkaline phosphatase. Profilin1 was expressed not only in MLO-Y4cells but also in the primary cultures of osteocytes. Importantly, profilin1 mRNA levels in primary cultures of osteocytes were higher than those in primary cultures of osteoblasts. To examine in vivo role of profilin1 in osteocytes, profilin1 was conditionally knocked out by using DMP1-cre and profilin1 floxed mice. This conditional deletion of profilin1 specifically in osteocytes resulted in reduction in the levels of bone volume and bone mineral density. These data indicate that profilin1 is expressed in osteocytes and regulates cell shape, migration and bone mass.
  • Makiri Kawasaki, Yayoi Izu, Tadayoshi Hayata, Hisashi Ideno, Akira Nifuji, Val C Sheffield, Yoichi Ezura, Masaki Noda
    Bone 101 179-190 2017年8月  査読有り
    Bardet-Biedl Syndrome (BBS) is an autosomal recessive disorder and is classified as one of the ciliopathy. The patients manifest a characteristic craniofacial dysmorphology but the effects of Bbs3 deficiency in the developmental process during the craniofacial pathogenesis are still incompletely understood. Here, we analyzed a cranial development of a BBS model Bbs3-/- mouse. It was previously reported that these mutant mice exhibit a dome-shape cranium. We show that Bbs3-/- mouse embryos present mid-facial hypoplasia and solitary central upper incisor. Morphologically, these mutant mice show synchondrosis of the cranial base midline due to the failure to fuse in association with loss of intrasphenoidal synchondrosis. The cranial base was laterally expanded and longitudinally shortened. In the developing cartilaginous primordium of cranial base, cells present in the midline were less in Bbs3-/- embryos. Expression of BBS3 was observed specifically in a cell population lying between condensed ectomesenchyme in the midline and the ventral midbrain at this stage. Finally, siRNA-based knockdown of Bbs3 in ATDC5 cells impaired migration in culture. Our data suggest that BBS3 is required for the development of cranial base via regulation of cell migration toward the midline where they promote the condensation of ectomesenchyme and form the future cartilaginous templates of cranial base.
  • Chantida Pawaputanon Na Mahasarakham, Yayoi Izu, Katsuhiko Nishimori, Yuichi Izumi, Masaki Noda, Yoichi Ezura
    Journal of cellular physiology 232(7) 1761-1766 2017年7月  査読有り
    LGR4 is expressed in bone and has been shown to be involved in bone metabolism. Oxidative stress is one of the key issues in pathophysiology of osteoporosis. However, the link between Lgr4 and oxidative stress has not been known. Therefore, effects of hydrogen peroxide on Lgr4 expression in osteoblasts were examined. Hydrogen peroxide treatment suppressed the levels of Lgr4 mRNA expression in an osteoblastic cell line, MC3T3-E1. The suppressive effects were not obvious at 0.1 mM, while 1 mM hydrogen peroxide suppressed Lgr4 expression by more than 50%. Hydrogen peroxide treatment suppressed Lgr4 expression within 12 h and this suppression lasted at least up to 48 h. Hydrogen peroxide suppression of Lgr4 expression was still observed in the presence of a transcription inhibitor but was no longer observed in the presence of a protein synthesis inhibitor. Although Lgr4 expression in osteoblasts is enhanced by BMP2 treatment as reported before, hydrogen peroxide treatment suppressed Lgr4 even in the presence of BMP2. Finally, hydrogen peroxide suppressed Lgr4 expression in primary cultures of osteoblasts similarly to MC3T3-E1 cells. These date indicate that hydrogen peroxide suppresses Lgr4 expression in osteoblastic cells. J. Cell. Physiol. 232: 1761-1766, 2017. © 2016 Wiley Periodicals, Inc.
  • Sakie Katsumura, Yayoi Izu, Takayuki Yamada, Kathy Griendling, Kiyoshi Harada, Masaki Noda, Yoichi Ezura
    Journal of cellular biochemistry 118(7) 1670-1677 2017年7月  査読有り
    Osteoporosis is one of the most prevalent ageing-associated diseases that are soaring in the modern world. Although various aspects of the disease have been investigated to understand the bases of osteoporosis, the pathophysiological mechanisms underlying bone loss is still incompletely understood. Poldip2 is a molecule that has been shown to be involved in cell migration of vascular cells and angiogenesis. However, expression of Poldip2 and its regulation in bone cells were not known. Therefore, we examined the Poldip2 mRNA expression and the effects of bone regulators on the Poldip2 expression in osteoblasts. We found that Poldip2 mRNA is expressed in osteoblastic MC3T3-E1 cells. As FGF controls osteoblasts and angiogenesis, FGF regulation was investigated in these cells. FGF suppressed the expression of Poldip2 in MC3T3-E1 cells in a time dependent manner. Protein synthesis inhibitor but not transcription inhibitor reduced the FGF effects on Poldip2 gene expression in MC3T3-E1 cells. As for bone-related hormones, dexamethasone was found to enhance the expression of Poldip2 in osteoblastic MC3T3-E1 cells whereas FGF still suppressed such dexamethasone effects. With respect to function, knockdown of Poldip2 by siRNA suppressed the migration of MC3T3-E1 cells. Poldip2 was also expressed in the primary cultures of osteoblast-enriched cells and FGF also suppressed its expression. Finally, Poldip2 was expressed in femoral bone in vivo and its levels were increased in aged mice compared to young adult mice. These data indicate that Poldip2 is expressed in osteoblastic cells and is one of the targets of FGF. J. Cell. Biochem. 118: 1670-1677, 2017. © 2016 Wiley Periodicals, Inc.
  • Rolen M Quadros, Hiromi Miura, Donald W Harms, Hisako Akatsuka, Takehito Sato, Tomomi Aida, Ronald Redder, Guy P Richardson, Yutaka Inagaki, Daisuke Sakai, Shannon M Buckley, Parthasarathy Seshacharyulu, Surinder K Batra, Mark A Behlke, Sarah A Zeiner, Ashley M Jacobi, Yayoi Izu, Wallace B Thoreson, Lisa D Urness, Suzanne L Mansour, Masato Ohtsuka, Channabasavaiah B Gurumurthy
    Genome biology 18(1) 92-92 2017年5月17日  査読有り
    BACKGROUND: Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. RESULTS: Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5-100% of the resulting live offspring. CONCLUSIONS: Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.
  • Tomomi Aida, Shota Nakade, Tetsushi Sakuma, Yayoi Izu, Ayu Oishi, Keiji Mochida, Harumi Ishikubo, Takako Usami, Hidenori Aizawa, Takashi Yamamoto, Kohichi Tanaka
    BMC genomics 17(1) 979-979 2016年11月28日  査読有り
    BACKGROUND: Although CRISPR/Cas enables one-step gene cassette knock-in, assembling targeting vectors containing long homology arms is a laborious process for high-throughput knock-in. We recently developed the CRISPR/Cas-based precise integration into the target chromosome (PITCh) system for a gene cassette knock-in without long homology arms mediated by microhomology-mediated end-joining. RESULTS: Here, we identified exonuclease 1 (Exo1) as an enhancer for PITCh in human cells. By combining the Exo1 and PITCh-directed donor vectors, we achieved convenient one-step knock-in of gene cassettes and floxed allele both in human cells and mouse zygotes. CONCLUSIONS: Our results provide a technical platform for high-throughput knock-in.
  • Yukihiro Kohara, Satoshi Soeta, Yayoi Izu, Kiyotaka Arai, Hajime Amasaki
    Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft 208 58-68 2016年11月  査読有り
    In the groove of Ranvier (GOR), osteoblast lineages form bone bark, which develops into endosteal cortical bone. This ossification process is thought to be regulated by the microenvironment in the GOR. Type VI collagen (Col VI), an extracellular matrix (ECM) protein found in the periosteum/perichondrium, mediates osteoblast differentiation via the cell-surface receptor neural/glial antigen 2 (NG2) chondroitin sulfate proteoglycan. In order to clarify the function of Col VI during osteoblast differentiation in the GOR, in the present study, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the rat tibia proximal end during postnatal growing periods by immunohistochemistry. Our data revealed that Col VI accumulated in the ECM of the GOR middle layer and that Col VI accumulation was reduced and disappeared in the inner and middle lower regions. Runt-related transcription factor 2-immunoreactive pre-osteoblasts expressed NG2 in Col VI-immunopositive areas. However, Osterix-immunoreactive mature osteoblasts were only found in the Col VI-immunonegative area. These findings indicate that Col VI provided a characteristic microenvironment in the GOR and that NG2-Col VI interactions may regulate the differentiation of osteoblast lineages prior to terminal maturation.
  • Yoichi Ezura, Xin Lin, Arina Hatta, Yayoi Izu, Masaki Noda
    Calcified tissue international 99(2) 199-208 2016年8月  査読有り
    Heterotopic ossification (HO) in various tissues evokes clinical problems. Inflammatory responses of the stromal progenitor cells may be involved in its etiology. Previous report indicated that pro-inflammatory cytokines including IL-1β enhanced the in vitro calcification of human mesenchymal stem cells (MSCs), by suppressing the expression of ectonucleotide pyrophosphatase/phosphodiesterase-1 gene (ENPP1). However, possible contribution of other related factors had not been investigated. Here, we investigated the expression of regulators of extracellular pyrophosphate and nucleosides including Enpp1, Nt5e, Ank, Enptds, and Ent1, examining various connective tissue stromal progenitor cells, including bone marrow stromal cells and synovium derived cells from mouse, or bone marrow MSCs from human. Consistent with previous studies, we observed characteristic suppression of the osteoblastic marker genes by IL-1β during the osteogenic culture for 20 days. In addition, we observed a reduced expression of the important transporter genes, Ank and Ent1, whereas the alteration in Enpp1 and Nt5e levels was not always consistent among the cell types. Our results suggest that IL-1β suppresses not only the osteoblastic but also the negative regulators of soft-tissue calcification, including Ank and Ent1 in stromal progenitor cells, which may contribute to the mechanisms of HO in various disorders.
  • Yayoi Izu, Yoichi Ezura, Manuel Koch, David E Birk, Masaki Noda
    Cell and tissue research 364(3) 623-635 2016年6月  査読有り筆頭著者責任著者
    Bone formation is precisely regulated by cell-cell communication in osteoblasts. We have previously demonstrated that genetic deletion of Col6a1 or Col12a1 impairs osteoblast connections and/or communication in mice, resulting in bone mass reduction and bone fragility. Mutations of the genes encoding collagen VI cause Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM), which have overlapping phenotypes involving connective tissue and muscle. Recent studies have identified COL12A1 gene mutations in patients with UCMD- and BM-like disorders harboring no COL6 mutations, indicating the shared functions of these collagens in connective tissue homeostasis. The purpose of this investigation has been to test the hypothesis that collagens VI and XII have coordinate regulatory role(s) during bone formation. We analyzed the localization of collagens VI and XII relative to primary osteoblasts during osteogenesis. Immunofluorescence analysis demonstrated that collagens VI and XII colocalized in matrix bridges between adjacent cells during periods when osteoblasts were establishing cell-cell connections. Quantification of cells harboring collagen bridges demonstrated that matrix bridges were composed of collagens VI and XII but not collagen I. Interestingly, matrix bridge formation was impaired in osteoblasts deficient in either Col6a1 or Col12a1, suggesting that both collagens were indispensable for matrix bridge formation. These data demonstrate, for the first time, a functional relationship between collagens VI and XII during osteogenesis and indicate that a complex containing collagens VI and XII is essential for the formation of a communicating cellular network during bone formation.
  • Yayoi Izu, Yoichi Ezura, Manuel Koch, David E Birk, Masaki Noda
    Cell and tissue research 364(3) 677-679 2016年6月  査読有り
  • Shuichi Moriya, Yayoi Izu, Smriti Arayal, Makiri Kawasaki, Koki Hata, Chantida Pawaputanon Na Mahasarakhahm, Yuichi Izumi, Paul Saftig, Kazuo Kaneko, Masaki Noda, Yoichi Ezura
    Journal of cellular physiology 231(5) 1163-70 2016年5月  査読有り
    Unloading induces bone loss and causes disuse osteoporosis. However, the mechanism underlying disuse osteoporosis is still incompletely understood. Here, we examined the effects of cathepsin K (CatK) deficiency on disuse osteoporosis induced by using sciatic neurectomy (Nx) model. After 4 weeks of surgery, CatK KO and WT mice were sacrificed and subjected to analyses. For cancellous bone rich region, Nx reduced the bone mineral density (BMD) compared to the BMD in the sham operated side in wild type mice. In contrast, CatK deficiency suppressed such Nx-induced reduction of BMD in cancellous bone. Nx also reduced BMD in the mid shaft cortical bone compared to the BMD in the corresponding region on the sham operated side in wild type mice. In contrast, CatK deficiency suppressed such Nx-induced reduction of BMD in the mid shaft cortical bone. Bone volume (BV/TV) was reduced by Nx in WT mice. In contrast, Cat-K deficiency suppressed such reduction in bone volume. Interestingly, CatK deficiency suppressed osteoclast number and osteoclast surface in the Nx side compared to sham side. When bone marrow cells obtained from Nx side femur of CatK-KO mice were cultured, the levels of the calcified area in culture were increased. Further examination of gene expression indicated that Nx suppressed the expression of genes encoding osteoblast-phenotype-related molecules such as Runx2 and alkaline phosphatase in WT mice. In contrast, CatK deficiency suppressed such reduction. These data indicate that CatK is involved in the disuse-induced bone mass reduction.
  • Chantida Pawaputanon Na Mahasarakham, Yoichi Ezura, Makiri Kawasaki, Arayal Smriti, Shuichi Moriya, Takayuki Yamada, Yayoi Izu, Akira Nifuji, Katsuhiko Nishimori, Yuichi Izumi, Masaki Noda
    Journal of cellular physiology 231(4) 887-95 2016年4月  査読有り
    Osteoporosis is one of the most prevalent diseases and the number of patients suffering from this disease is soaring due to the increase in the aged population in the world. The severity of bone loss in osteoporosis is based on the levels of impairment in the balance between bone formation and bone resorption, two arms of the bone metabolism, and bone remodeling. However, determination of bone formation levels is under many layers of control that are as yet fully defined. Bone morphogenetic protein (BMP) plays a key role in regulation of bone formation while its downstream targets are still incompletely understood. Lgr4 gene encodes an orphan receptor and has been identified as a genetic determinant for bone mass in osteoporotic patients. Here, we examine the effects of BMP on the expression of Lgr4 in osteoblastic cells. Lgr4 gene is expressed in an osteoblastic cell line, MC3T3E1 in a time dependent manner during the culture. BMP treatment enhances Lgr4 mRNA expression at least in part via transcriptional event. When Lgr4 mRNA is knocked down, the levels of BMP-induced increase in alkaline phosphatase (Alp) activity and Alp mRNA are suppressed. BMP enhancement of Lgr4 gene expression is suppressed by FGF and reversed by dexamethasone. BMP also enhances Lgr4 expression in primary cultures of calvarial osteoblasts. These data indicate that Lgr4 gene is regulated by BMP and is required for BMP effects on osteoblastic differentiation. J. Cell. Physiol. 231: 887-895, 2016. © 2015 Wiley Periodicals, Inc.
  • Tetsuya Nakamoto, Yayoi Izu, Makiri Kawasaki, Takuya Notomi, Tadayoshi Hayata, Masaki Noda, Yoichi Ezura
    Journal of cellular biochemistry 117(4) 970-7 2016年4月  査読有り
    CIZ/NMP4 (Cas interacting zinc finger protein, Nmp4, Zfp384) is a transcription factor that is known to regulate matrix related-proteins. To explore the possible pathophysiological role of CIZ/NMP4 in arthritis, we examined CIZ/NMP4 expression in articular cartilage in arthritis model. CIZ/NMP4 was expressed in the articular chondrocytes of mice at low levels while its expression was enhanced when arthritis was induced. Arthritis induction increased clinical score in wild type mice. In contrast, CIZ/NMP4 deficiency suppressed such rise in the levels of arthritis score and swelling of soft tissue. CIZ/NMP4 deficiency also reduced invasion of inflammatory cells in joint tissue. Quantitative PCR analyses of mRNA from joints revealed that arthritis-induced increase in expressions of IL-1β was suppressed by CIZ/NMP4 deficiency. CIZ/NMP4 bound to IL-1β promoter and activated its transcription. The increase in CIZ/NMP4 in arthritis was also associated with enhancement in bone resorption and cartilage matrix degradation. In fact, RANKL, a signaling molecule prerequisite for osteoclastogenesis and, MMP-3, a clinical marker for arthritis were increased in joints upon arthritis induction. In contrast, CIZ/NMP4 deficiency suppressed the arthritis-induced increase in bone resorption, expression of RANKL and MMP-3 mRNA. Thus, CIZ/NMP4 plays a role in the development of arthritis at least in part through regulation of key molecules related to the arthritis.
  • Wanting Lin, Yoichi Ezura, Yayoi Izu, Smriti A C Aryal, Makiri Kawasaki, Pawaputanon Na Mahasarakham Chantida, Keiji Moriyama, Masaki Noda
    Journal of cellular biochemistry 117(3) 621-8 2016年3月  査読有り
    Profilin 1 (Pfn1) regulates cytoskeletal reorganization and migration, but its role in osteoblasts is not known. BMP (bone morphogenetic protein) is a multifunctional cytokine involved in osteoblastic differentiation and promotes bone regeneration and repair. Although several molecules are known to modulate BMP signaling, mechanisms that determine the levels of BMP action in osteoblastic function are still incompletely understood. We therefore examine the expression of Pfn1 in osteoblasts and its role in BMP-induced differentiation in osteoblasts. In osteoblastic MC3T3-E1(MC) cells, Pfn1 mRNA is expressed constitutively and its expression levels are declined during the culture in a time dependent manner in contrast to the increase in alkaline phosphatase activity revealing that Pfn1 expression is down regulated along with differentiation. To test the effects of osteoblastic differentiation on Pfn1expression further, MC cells are treated with BMP. BMP treatment suppresses the levels of Pfn1 mRNA. This suppressive effect of BMP is time dependent and further down regulation of Pfn1 mRNA levels is observed when the BMP treatment is continued for a longer period of time. Pfn1mRNA knock down (KD) by siRNAs enhances BMP-induced increase in alkaline phosphatase (Alp) activity in MC cells. To analyze the regulatory mechanism, Alp mRNA levels are examined and Pfn1 KD enhances the BMP-induced increase in the levels of Alp mRNA expression. Furthermore, Pfn1 KD enhances BMP-induced transcriptional expression of luciferase reporter activity via BMP response element in osteoblasts. These data indicate that Pfn1 is a novel target of BMP and suppresses BMP-induced differentiation of osteoblasts at least in part via transcriptional event.
  • Sakie Katsumura, Yoichi Ezura, Yayoi Izu, Jumpei Shirakawa, Atsushi Miyawaki, Kiyoshi Harada, Masaki Noda
    Journal of cellular physiology 231(2) 496-504 2016年2月  査読有り
    Osteoporosis affects over 20 million patients in the United States. Among those, disuse osteoporosis is serious as it is induced by bed-ridden conditions in patients suffering from aging-associated diseases including cardiovascular, neurological, and malignant neoplastic diseases. Although the phenomenon that loss of mechanical stress such as bed-ridden condition reduces bone mass is clear, molecular bases for the disuse osteoporosis are still incompletely understood. In disuse osteoporosis model, bone loss is interfered by inhibitors of sympathetic tone and adrenergic receptors that suppress bone formation. However, how beta adrenergic stimulation affects osteoblastic migration and associated proliferation is not known. Here we introduced a live imaging system, fluorescent ubiquitination-based cell cycle indicator (FUCCI), in osteoblast biology and examined isoproterenol regulation of cell cycle transition and cell migration in osteoblasts. Isoproterenol treatment suppresses the levels of first entry peak of quiescent osteoblastic cells into cell cycle phase by shifting from G1 /G0 to S/G2 /M and also suppresses the levels of second major peak population that enters into S/G2 /M. The isoproterenol regulation of osteoblastic cell cycle transition is associated with isoproterenol suppression on the velocity of migration. This isoproterenol regulation of migration velocity is cell cycle phase specific as it suppresses migration velocity of osteoblasts in G1 phase but not in G1 /S nor in G2 /M phase. Finally, these observations on isoproterenol regulation of osteoblastic migration and cell cycle transition are opposite to the PTH actions in osteoblasts. In summary, we discovered that sympathetic tone regulates osteoblastic migration in association with cell cycle transition by using FUCCI system.
  • Smriti Aryal A C, Kentaro Miyai, Yayoi Izu, Tadayoshi Hayata, Takuya Notomi, Masaki Noda, Yoichi Ezura
    Proceedings of the National Academy of Sciences of the United States of America 112(50) 15432-7 2015年12月15日  査読有り
    Migration of the cells in osteoblastic lineage, including preosteoblasts and osteoblasts, has been postulated to influence bone formation. However, the molecular bases that link preosteoblastic/osteoblastic cell migration and bone formation are incompletely understood. Nck (noncatalytic region of tyrosine kinase; collectively referred to Nck1 and Nck2) is a member of the signaling adaptors that regulate cell migration and cytoskeletal structures, but its function in cells in the osteoblastic lineage is not known. Therefore, we examined the role of Nck in migration of these cells. Nck is expressed in preosteoblasts/osteoblasts, and its knockdown suppresses migration as well as cell spreading and attachment to substrates. In contrast, Nck1 overexpression enhances spreading and increases migration and attachment. As for signaling, Nck double knockdown suppresses migration toward IGF1 (insulin-like growth factor 1). In these cells, Nck1 binds to IRS-1 (insulin receptor substrate 1) based on immunoprecipitation experiments using anti-Nck and anti-IRS-1 antibodies. In vivo, Nck knockdown suppresses enlargement of the pellet of DiI-labeled preosteoblasts/osteoblasts placed in the calvarial defects. Genetic experiments indicate that conditional double deletion of both Nck1 and Nck2 specifically in osteoblasts causes osteopenia. In these mice, Nck double deficiency suppresses the levels of bone-formation parameters such as bone formation rate in vivo. Interestingly, bone-resorption parameters are not affected. Finally, Nck deficiency suppresses repair of bone injury after bone marrow ablation. These results reveal that Nck regulates preosteoblastic/osteoblastic migration and bone mass.
  • Makiri Kawasaki, Yoichi Ezura, Tadayoshi Hayata, Takuya Notomi, Yayoi Izu, Masaki Noda
    Journal of cellular physiology 230(11) 2788-95 2015年11月  査読有り
    Ift88 is an intraflagella transport protein, critical for the cilium, and has been shown to be required for the maintenance of chondrocytes and cartilage. However, how Ift88 is controlled by cytokines that play a role in osteoarthritis is not well understood. Therefore, we examined the effects of TGF-β on the expression of Ift88. We used ATDC5 cells as chondrocytes and analyzed the effects of TGF-β on gene expression. TGF-β treatment suppresses the levels of Ift88 mRNA in a dose-dependent manner starting from as low as 0.5 ng/mL and reaching the nadir at around 2 ng/mL. TGF-β treatment also suppresses the protein levels of Ift88. TGF-β suppression of Ift88 is still observed when the cells are cultured in the presence of a transcriptional inhibitor while the TGF-β suppression is weakened in the presence of a protein synthesis inhibitor, cycloheximide. TGF-β treatment suppresses the levels of Ift88 mRNA stability suggesting the presence of posttranscriptional regulation. TGF-β treatment reduces the number of cilia positive cells and suppresses average length of cilia. Knockdown of Ift88 by siRNA enhances TGF-β-induced increase in type II collagen mRNA expression in ATDC5 cells revealing the suppressive role of Ift88 on TGF-β-induced regulation of extracellular matrix protein expression. TGF-β also suppresses Ift88 mRNA expression in primary culture of rib chondrocytes. These data indicate that TGF-β regulates Ift88 gene expression at least in part via posttrascriptional manner.
  • Takayuki Yamada, Yoichi Ezura, Tadayoshi Hayata, Shuichi Moriya, Jumpei Shirakawa, Takuya Notomi, Smriti Arayal, Makiri Kawasaki, Yayoi Izu, Kiyoshi Harada, Masaki Noda
    Journal of cellular biochemistry 116(6) 1144-52 2015年6月  査読有り
    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.
  • Yukihiro Kohara, Satoshi Soeta, Yayoi Izu, Hajime Amasaki
    Journal of anatomy 226(5) 478-88 2015年5月  査読有り
    In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages.
  • Shuichi Moriya, Tadayoshi Hayata, Takuya Notomi, Smriti Aryal, Testuya Nakamaoto, Yayoi Izu, Makiri Kawasaki, Takayuki Yamada, Jumpei Shirakawa, Kazuo Kaneko, Yoichi Ezura, Masaki Noda
    Journal of cellular biochemistry 116(1) 142-8 2015年1月  査読有り
    As the aged population is soaring, prevalence of osteoporosis is increasing. However, the molecular basis underlying the regulation of bone mass is still incompletely understood. Sympathetic tone acts via beta2 adrenergic receptors in bone and regulates the mass of bone which is the target organ of parathyroid hormone (PTH). However, whether beta2 adrenergic receptor is regulated by PTH in bone cells is not known. We therefore investigated the effects of PTH on beta2 adrenergic receptor gene expression in osteoblast-like MC3T3-E1 cells. PTH treatment immediately suppressed the expression levels of beta2 adrenergic receptor mRNA. This PTH effect was dose-dependent starting as low as 1 nM. PTH action on beta2 adrenergic receptor gene expression was inhibited by a transcriptional inhibitor, DRB, but not by a protein synthesis inhibitor, cycloheximide suggesting direct transcription control. Knockdown of beta2 adrenergic receptor promoted PTH-induced expression of c-fos, an immediate early response gene. With respect to molecular basis for this phenomenon, knockdown of beta2 adrenergic receptor enhanced PTH-induced transcriptional activity of cyclic AMP response element-luciferase construct in osteoblasts. Knockdown of beta2 adrenergic receptors also enhanced forskolin-induced luciferase expression, revealing that adenylate cyclase activity is influenced by beta2 adrenergic receptor. As for phosphorylation of transcription factor, knockdown of beta2 adrenergic receptor enhanced PTH-induced phosphorylation of cyclic AMP response element binding protein (CREB). These data reveal that beta2 adrenergic receptor is one of the targets of PTH and acts as a suppressor of PTH action in osteoblasts.
  • Yaqun Zou, Daniela Zwolanek, Yayoi Izu, Shreya Gandhy, Gudrun Schreiber, Knut Brockmann, Marcella Devoto, Zuozhen Tian, Ying Hu, Guido Veit, Markus Meier, Jörg Stetefeld, Debbie Hicks, Volker Straub, Nicol C Voermans, David E Birk, Elisabeth R Barton, Manuel Koch, Carsten G Bönnemann
    Human molecular genetics 23(9) 2339-52 2014年5月1日  査読有り
    Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease.
  • Yoshinori Takahashi, Tsukasa Hori, Timothy K Cooper, Jason Liao, Neelam Desai, Jacob M Serfass, Megan M Young, Sungman Park, Yayoi Izu, Hong-Gang Wang
    Blood 121(9) 1622-32 2013年2月28日  査読有り
    Malignant transformation by oncogenes requires additional genetic/epigenetic changes to overcome enhanced susceptibility to apoptosis. In the present study, we report that Bif-1 (Sh3glb1), a gene encoding a membrane curvature–driving endophilin protein, is a haploinsufficient tumor suppressor that plays a key role in the prevention of chromosomal instability and suppresses the acquisition of apoptosis resistance during Myc-driven lymphomagenesis. Although a large portion of Bif-1–deficient mice harboring an Eμ-Myc transgene displayed embryonic lethality, allelic loss of Bif-1 dramatically accelerated the onset of Myc-induced lymphoma. At the premalignant stage, hemizygous deletion of Bif-1 resulted in an increase in mitochondrial mass, accumulation of DNA damage, and up-regulation of the antiapoptotic protein Mcl-1. Consistently, allelic loss of Bif-1 suppressed the activation of caspase-3 in Myc-induced lymphoma cells. Moreover, we found that Bif-1 is indispensable for the autophagy-dependent clearance of damaged mitochondria (mitophagy), because loss of Bif-1 resulted in the accumulation of endoplasmic reticulum–associated immature autophagosomes and suppressed the maturation of autophagosomes. The results of the present study indicate that Bif-1 haploinsufficiency attenuates mitophagy and results in the promotion of chromosomal instability, which enables tumor cells to efficiently bypass the oncogenic/metabolic pressures for apoptosis. .
  • Yayoi Izu, Yoichi Ezura, Fumitaka Mizoguchi, Aya Kawamata, Tetsuya Nakamoto, Kazuhisa Nakashima, Tadayoshi Hayata, Hiroaki Hemmi, Paolo Bonaldo, Masaki Noda
    Tissue & cell 44(1) 1-6 2012年2月  査読有り
    Bone consists of type I collagen as a major protein with minor various matrix proteins. Type VI collagen is one of bone matrix proteins but its function is not known. We therefore examined the effects of type VI collagen deficiency on bone. 3D-μCT analysis revealed that type VI collagen deficiency reduced cancellous bone mass. Cortical bone mass was not affected. Type VI collagen deficiency distorted the shape of osteoblasts both in the cancellous bone and in the cambium layer of periosteal region. Furthermore, type VI collagen deficiency disorganized collagen arrangement. These data indicate that type VI collagen contributes to maintain bone mass.
  • Masashi Nagao, Timothy N Feinstein, Yoichi Ezura, Tadayoshi Hayata, Takuya Notomi, Yoshitomo Saita, Ryo Hanyu, Hiroaki Hemmi, Yayoi Izu, Shu Takeda, Kathryn Wang, Susan Rittling, Tetsuya Nakamoto, Kazuo Kaneko, Hisashi Kurosawa, Gerard Karsenty, David T Denhardt, Jean-Pierre Vilardaga, Masaki Noda
    Proceedings of the National Academy of Sciences of the United States of America 108(43) 17767-72 2011年10月25日  査読有り
    The sympathetic nervous system suppresses bone mass by mechanisms that remain incompletely elucidated. Using cell-based and murine genetics approaches, we show that this activity of the sympathetic nervous system requires osteopontin (OPN), a cytokine and one of the major members of the noncollagenous extracellular matrix proteins of bone. In this work, we found that the stimulation of the sympathetic tone by isoproterenol increased the level of OPN expression in the plasma and bone and that mice lacking OPN (OPN-KO) suppressed the isoproterenol-induced bone loss by preventing reduced osteoblastic and enhanced osteoclastic activities. In addition, we found that OPN is necessary for changes in the expression of genes related to bone resorption and bone formation that are induced by activation of the sympathetic tone. At the cellular level, we showed that intracellular OPN modulated the capacity of the β2-adrenergic receptor to generate cAMP with a corresponding modulation of cAMP-response element binding (CREB) phosphorylation and associated transcriptional events inside the cell. Our results indicate that OPN plays a critical role in sympathetic tone regulation of bone mass and that this OPN regulation is taking place through modulation of the β2-adrenergic receptor/cAMP signaling system.
  • Yayoi Izu, Mei Sun, Daniela Zwolanek, Guido Veit, Valerie Williams, Byeong Cha, Karl J Jepsen, Manuel Koch, David E Birk
    The Journal of cell biology 193(6) 1115-30 2011年6月13日  査読有り
    Differentiated osteoblasts are polarized in regions of bone deposition, demonstrate extensive cell interaction and communication, and are responsible for bone formation and quality. Type XII collagen is a fibril-associated collagen with interrupted triple helices and has been implicated in the osteoblast response to mechanical forces. Type XII collagen is expressed by osteoblasts and localizes to areas of bone formation. A transgenic mouse null for type XII collagen exhibits skeletal abnormalities including shorter, more slender long bones with decreased mechanical strength as well as altered vertebrae structure compared with wild-type mice. Col12a(-/-) osteoblasts have decreased bone matrix deposition with delayed maturation indicated by decreased bone matrix protein expression. Compared with controls, Col12a(-/-) osteoblasts are disorganized and less polarized with disrupted cell-cell interactions, decreased connexin43 expression, and impaired gap junction function. The data demonstrate important regulatory roles for type XII collagen in osteoblast differentiation and bone matrix formation.
  • Yayoi Izu, Heather L Ansorge, Guiyun Zhang, Louis J Soslowsky, Paolo Bonaldo, Mon-Li Chu, David E Birk
    Matrix biology : journal of the International Society for Matrix Biology 30(1) 53-61 2011年1月  査読有り
    Tendons are composed of fibroblasts and collagen fibrils. The fibrils are organized uniaxially and grouped together into fibers. Collagen VI is a non-fibrillar collagen expressed in developing and adult tendons. Human collagen VI mutations result in muscular dystrophy, joint hyperlaxity and contractures. The purpose of this study is to determine the functional roles of collagen VI in tendon matrix assembly. During tendon development, collagen VI was expressed throughout the extracellular matrix, but enriched around fibroblasts and their processes. To analyze the functional roles of collagen VI a mouse model with a targeted inactivation of Col6a1 gene was utilized. Ultrastructural analysis of Col6a1-/- versus wild type tendons demonstrated disorganized extracellular micro-domains and associated collagen fibers in the Col6a1-/- tendon. In Col6a1-/- tendons, fibril structure and diameter distribution were abnormal compared to wild type controls. The diameter distributions were shifted significantly toward the smaller diameters in Col6a1-/- tendons compared to controls. An analysis of fibril density (number/μm(2)) demonstrated a ~2.5 fold increase in the Col6a1-/- versus wild type tendons. In addition, the fibril arrangement and structure were aberrant in the peri-cellular regions of Col6a1-/- tendons with frequent very large fibrils and twisted fibrils observed restricted to this region. The biomechanical properties were analyzed in mature tendons. A significant decrease in cross-sectional area was observed. The percent relaxation, maximum load, maximum stress, stiffness and modulus were analyzed and Col6a1-/- tendons demonstrated a significant reduction in maximum load and stiffness compared to wild type tendons. An increase in matrix metalloproteinase activity was suggested in the absence of collagen VI. This suggests alterations in tenocyte expression due to disruption of cell-matrix interactions. The changes in expression may result in alterations in the peri-cellular environment. In addition, the absence of collagen VI may alter the sequestering of regulatory molecules such as leucine rich proteoglycans. These changes would result in dysfunctional regulation of tendon fibrillogenesis indirectly mediated by collagen VI.
  • Fumitaka Mizoguchi, Yayoi Izu, Tadayoshi Hayata, Hiroaki Hemmi, Kazuhisa Nakashima, Takashi Nakamura, Shigeaki Kato, Nobuyuki Miyasaka, Yoichi Ezura, Masaki Noda
    Journal of cellular biochemistry 109(5) 866-75 2010年4月1日  査読有り
    Osteoclasts are unique cells that resorb bone, and are involved in not only bone remodeling but also pathological bone loss such as osteoporosis and rheumatoid arthritis. The regulation of osteoclasts is based on a number of molecules but full details of these molecules have not yet been understood. MicroRNAs are produced by Dicer cleavage an emerging regulatory system for cell and tissue function. Here, we examine the effects of Dicer deficiency in osteoclasts on osteoclastic activity and bone mass in vivo. We specifically knocked out Dicer in osteoclasts by crossing Dicer flox mice with cathepsin K-Cre knock-in mice. Dicer deficiency in osteoclasts decreased the number of osteoclasts (N.Oc/BS) and osteoclast surface (Oc.S/BS) in vivo. Intrinsically, Dicer deficiency in osteoclasts suppressed the levels of TRAP positive multinucleated cell development in culture and also reduced NFATc1 and TRAP gene expression. MicroRNA analysis indicated that expression of miR-155 was suppressed by RANKL treatment in Dicer deficient cells. Dicer deficiency in osteoclasts suppressed osteoblastic activity in vivo including mineral apposition rate (MAR) and bone formation rate (BFR) and also suppressed expression of genes encoding type I collagen, osteocalcin, Runx2, and Efnb2 in vivo. Dicer deficiency in osteoclasts increased the levels of bone mass indicating that the Dicer deficiency-induced osteoclastic suppression was dominant over Dicer deficiency-induced osteoblastic suppression. On the other hand, conditional Dicer deletion in osteoblasts by using 2.3 kb type I collagen-Cre did not affect bone mass. These results indicate that Dicer in osteoclasts controls activity of bone resorption in vivo.
  • Yayoi Izu, Fumitaka Mizoguchi, Aya Kawamata, Tadayoshi Hayata, Testuya Nakamoto, Kazuhisa Nakashima, Tadashi Inagami, Yoichi Ezura, Masaki Noda
    JOURNAL OF BIOLOGICAL CHEMISTRY 284(31) 21100-21100 2009年7月  査読有り
  • Kentaro Miyai, Mitsuhiro Yoneda, Urara Hasegawa, Sayaka Toita, Yayoi Izu, Hiroaki Hemmi, Tadayoshi Hayata, Yoichi Ezura, Shuki Mizutani, Kohei Miyazono, Kazunari Akiyoshi, Tadashi Yamamoto, Masaki Noda
    The Journal of biological chemistry 284(16) 10593-600 2009年4月17日  査読有り
    Ectopic bone formation after joint replacement or brain injury in humans is a serious complication that causes immobility of joints and severe pain. However, mechanisms underlying such ectopic bone formation are not fully understood. Bone morphogenetic protein (BMPs) are defined as inducers of ectopic bone formation, and they are regulated by several types of inhibitors. ANA is an antiproliferative molecule that belongs to Tob/BTG family, but its activity in bone metabolism has not been known. Here, we examined the role of ANA on ectopic bone formation activity of BMP. In ANA-deficient and wild-type mice, BMP2 was implanted to induce ectopic bone formation in muscle. ANA deficiency increased mass of newly formed bone in vivo compared with wild-type based on 3D-muCT analyses. ANA mRNA was expressed in bone in vivo as well as in osteoblastic cells in vitro. Such ANA mRNA levels were increased by BMP2 treatment in MC3T3-E1 osteoblastic cells. Overexpression of ANA suppressed BMP-induced expression of luciferase reporter gene linked to BMP response elements in these cells. Conversely, ANA mRNA knockdown by small interference RNA enhanced the BMP-dependent BMP response element reporter expression. It also enhanced BMP-induced osteoblastic differentiation in muscle-derived C2C12 cells. Immunoprecipitation assay indicated that ANA interacts with Smad8. Thus, ANA is a suppressor of ectopic bone formation induced by BMP, and this inhibitory ANA activity is a part of the negative feedback regulation of BMP function.
  • Yayoi Izu, Fumitaka Mizoguchi, Aya Kawamata, Tadayoshi Hayata, Testuya Nakamoto, Kazuhisa Nakashima, Tadashi Inagami, Yoichi Ezura, Masaki Noda
    The Journal of biological chemistry 284(8) 4857-64 2009年2月20日  査読有り
    Renin angiotensin system (RAS) regulates circulating blood volume and blood pressure systemically, whereas RAS also plays a role in the local milieu. Previous in vitro studies suggested that RAS may be involved in the regulation of bone cells. However, it was not known whether molecules involved in RAS are present in bone in vivo. In this study, we examined the presence of RAS components in adult bone and the effects of angiotensin II type 2 (AT2) receptor blocker on bone mass. Immunohistochemistry revealed that AT2 receptor protein was expressed in both osteoblasts and osteoclasts. In addition, renin and angiotensin II-converting enzyme were expressed in bone cells in vivo. Treatment with AT2 receptor blocker significantly enhanced the levels of bone mass, and this effect was based on the enhancement of osteoblastic activity as well as the suppression of osteoclastic activity in vivo. These results indicate that RAS components are present in adult bone and that blockade of AT2 receptor results in alteration in bone mass.
  • Aya Kawamata, Yayoi Izu, Haruna Yokoyama, Teruo Amagasa, Erwin F Wagner, Kazuhisa Nakashima, Yoichi Ezura, Tadayoshi Hayata, Masaki Noda
    Journal of cellular biochemistry 103(4) 1037-45 2008年3月1日  査読有り
    JunD is an activator protein-1 (AP-1) component though its function in skeletal system is still not fully understood. To elucidate the role of JunD in the regulation of bone metabolism, we analyzed JunD-deficient mice. JunD deficiency significantly increased bone mass and trabecular number. This bone mass enhancement was due to JunD deficiency-induced increase in bone formation activities in vivo. Such augmentation of bone formation was associated with simultaneous increase in bone resorption while the former was dominant over the latter as accumulation of bone mass occurred in JunD-deficient mice. In a pathological condition relevant to postmenopausal osteoporosis, ovariectomy reduced bone mass in wild type (WT) mice as known before. Interestingly, JunD deficiency suppressed ovariectomy-induced increase in bone resorption and kept high bone mass. In addition, JunD deficiency also enhanced new bone formation after bone marrow ablation. Examination of molecular bases for these observations revealed that JunD deficiency enhanced expression levels of c-jun, fra-1, and fra-2 in bone in conjunction with elevated expression levels of runx2, type I collagen, and osteocalcin. Thus, JunD is involved in estrogen depletion-induced osteopenia via its action to suppress bone formation and to enhance bone resorption.
  • Tomoatsu Kanda, Yutaka Yoshida, Yayoi Izu, Akira Nifuji, Yoichi Ezura, Kazuhisa Nakashima, Masaki Noda
    Journal of cellular biochemistry 101(6) 1329-37 2007年8月15日  査読有り
    Axial patterning in embryonic skeletogenesis associates with coordinated programming of somitogenesis and angiogenesis. As seen in endochondral bone formation, skeletogenesis is closely related to angiogenesis during development. PlexinD1 is a member of plexin family, is expressed in central nervous system and endothelium, and plays a role in blood vessel patterning and endothelium positioning during embryonic development. Here, we examined the effects of PlexinD1 deficiency on skeletogenesis. Three-dimensional micro CT examination revealed that PlexinD1 deficiency resulted in axial skeletal patterning defects including malformation in vertebral body and rib bone shape. Histological examination of the vertebral bodies and long bones showed that PlexinD1 deficiency altered the development of cartilage. PlexinD1 deficiency did not affect the levels of von Willebrand factor staining in relatively large vessels not attached but close to the vertebral body of mice. However, PlexinD1 deficiency reduced the von Willebrand factor (vWf) staining in most of the microvasculatures attached to the vertebral bone. PlexinD1 was expressed in osteoblastic cells and bone tissues of newborn and adult mice. As most of the homozygous knockout mice did not survive, we examined the role of PlexinD1 in bone formation in heterozygous adult mice subjected to bone marrow ablation. However, PlexinD1 heterozygous knockout did not reveal defects in new bone formation. In conclusion, PlexinD1 is involved in the patterning of axial skeletogenesis.
  • Yayoi Izu, Satoshi Soeta, Shinji Kamiya, Toru R Saito, Shuji Yamano, Kazuyuki Taniguchi
    The Journal of veterinary medical science 67(9) 927-33 2005年9月  査読有り
    To investigate the distribution of the early stage chondrocytes during the formation and closure of epiphyseal growth plate (EGP) of the domestic cat, we examined the EGP of proximal tibiae by immunohistochemistry for type VI collagen. In the epiphyseal cartilage without the secondary ossification center (SOC) and EGP in newborn cats aged 1 and 10 days, type VI collagen-positive chondrocytes were located around the cartilage canals and articular surface. In the epiphyseal cartilage with the SOC and EGP in young cats aged 1 to 3 months, type VI collagen-positive chondrocytes were located in the upper resting zone of the EGP, and then increased throughout the resting zone along with maturation. In the adult cats with the partially closed EGP, type VI collagen-positive chondrocytes were distributed throughout the remaining EGP. These findings indicate that the early stage chondrocytes characterized with type VI collagen are continuously located in the EGP during maturation. In addition, the increase of the early stage chondrocytes and the decrease of the reserve chondrocytes in the EGP along with maturation may cause the cessation of the longitudinal growth of the EGP, and finally bring about the EGP closure.
  • Satoshi Soeta, Yayoi Izu, Toru R Saito, Shuji Yamano, Kazuyuki Taniguchi
    The Journal of veterinary medical science 67(7) 701-6 2005年7月  査読有り
    Expression of neurofilament 200 (NF200)-like immunoreactivity was examined in the main olfactory system and the vomeronasal system of the Japanese newt, Cynops pyrrhogaster, using anti-porcine NF200 monoclonal antibody (clone N52) to investigate the differences in phenotypical characteristics between these systems. The entire nasal cavity was a flattened single chamber consisting of the main nasal chamber (MNC) and the lateral nasal sinus (LNS) communicating with each other. The olfactory epithelium (OE) was present in the MNC, and the vomeronasal epithelium (VNE) was in the LNS. The OE possessed only a small number of NF200-like immunoreactive receptor neurons. The olfactory nerve and the olfactory nerve layer of the main olfactory bulb also contained a small number of NF200-like immunoreactive axons. In contrast, the VNE possessed many NF200-like immunoreactive receptor neurons. The vomeronasal nerve and the vomeronasal nerve layer of the accessory olfactory bulb contained many NF200-like immunoreactive axons. These findings in the Japanese newt indicate that NF200-like immunoreactive receptor neurons constitute a major subpopulation in the VNE and a minor subpopulation in the OE. In addition, NF200-like immunoreactivity seems to be a useful marker to distinguish the vomeronasal system from the other nervous systems including the main olfactory system in the Japanese newt. The localization of a few NF200-like immunoreactive receptor neurons in the OE might indicate that pheromone-sensitive receptor neurons are intermingled in the OE of the Japanese newt.

MISC

 8

共同研究・競争的資金等の研究課題

 16