研究者業績

清見 礼

キヨミ マサシ  (Masashi Kiyomi)

基本情報

所属
成蹊大学 理工学部 理工学科 教授
学位
博士(情報学)(総合研究大学院大学)

J-GLOBAL ID
201201001276504150
researchmap会員ID
7000002258

- 2006年情報処理学会コンピュータサイエンス領域奨励賞
- IEEE ICDM Workshop on Frequent Itemset Mining Implementations, 2004, Best Implementation Award

研究キーワード

 2

論文

 49
  • Yuuki Aoike, Masashi Kiyomi, Yasuaki Kobayashi, Yota Otachi
    IEICE Trans. Inf. Syst. 107(4) 559-563 2024年  査読有り
  • Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi, Kazuhiro Kurita, Yota Otachi
    AAAI 3968-3976 2023年  査読有り
  • Yuuki Aoike, Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi, Kazuhiro Kurita, Yota Otachi
    Theory Comput. Syst. 66(2) 502-515 2022年  査読有り
  • Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yota Otachi
    Theor. Comput. Sci. 918 60-76 2022年  査読有り
  • Rémy Belmonte, Tesshu Hanaka, Masaaki Kanzaki, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi 0001, Michael Lampis, Hirotaka Ono, Yota Otachi
    Algorithmica 84(4) 871-895 2022年  査読有り
  • Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yota Otachi
    Lecture Notes in Computer Science 12701 271-285 2021年  査読有り
  • Masashi Kiyomi, Takashi Horiyama, Yota Otachi
    Inf. Process. Lett. 168 106084-106084 2021年  査読有り
  • Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi, Ryuhei Uehara
    Theoretical Computer Science 806 310-322 2020年2月  査読有り
  • Masashi Kiyomi, Hirotaka Ono, Yota Otachi, Pascal Schweitzer, Jun Tarui
    Theory Comput. Syst. 64(3) 522-541 2020年  査読有り
  • Rémy Belmonte, Tesshu Hanaka, Masaaki Kanzaki, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi, Michael Lampis, Hirotaka Ono, Yota Otachi
    Lecture Notes in Computer Science 12126 43-55 2020年  査読有り
  • Bireswar Das,Murali, Krishna Enduri, Masashi Kiyomi, Neeldhara Misra, Yota Otachi, I. Vinod Reddy, Shunya Yoshimura
    Theor. Comput. Sci. 782 79-90 2019年  査読有り
  • Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi, Michael Lampis, Yota Otachi
    J. Graph Algorithms Appl. 23(2) 111-134 2019年  査読有り
  • Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi, Michael Lampis, Yota Otachi
    Leibniz International Proceedings in Informatics, LIPIcs 100 51-513 2018年6月1日  査読有り
  • Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi, Ryuhei Uehara
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10755 8-19 2018年  査読有り
  • Masashi Kiyomi, Hirotaka Ono,Array, Pascal Schweitzer, Jun Tarui
    35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France 44:1-44:15 2018年  査読有り
  • Masashi Kiyomi, Yota Otachi
    DISCRETE APPLIED MATHEMATICS 223 91-97 2017年5月  査読有り
  • Takashi Horiyama, Masashi Kiyomi, Yoshio Okamoto, Ryuhei Uehara, Takeaki Uno, Yushi Uno, Yukiko Yamauchi
    Journal of Information Processing 25(8) 708-715 2017年  査読有り
    We study a combinatorial game named "sankaku-tori" in Japanese, which means "triangle-taking" in English. It is an old pencil-and-paper game for two players played in Western Japan. The game is played on points on the plane in general position. In each turn, a player adds a line segment to join two points, and the game ends when a triangulation of the point set is completed. The player who completes more triangles than the other wins. In this paper, we formalize this game and investigate three restricted variants of this game. We first investigate a solitaire variant; for a given set of points and line segments with two integers t and k, the problem asks if you can obtain t triangles after k moves. We show that this variant is NP-complete in general. The second variant is the standard two player version, but the points are in convex position. In this case, the first player has a nontrivial winning strategy. The last variant is a natural extension of the second one; we have the points in convex position but one point inside. Then, it turns out that the first player has no winning strategy.------------------------------This is a preprint of an article intended for publication Journal ofInformation Processing(JIP). This preprint should not be cited. Thisarticle should be cited as: Journal of Information Processing Vol.25(2017) (online)DOI http://dx.doi.org/10.2197/ipsjjip.25.708------------------------------We study a combinatorial game named "sankaku-tori" in Japanese, which means "triangle-taking" in English. It is an old pencil-and-paper game for two players played in Western Japan. The game is played on points on the plane in general position. In each turn, a player adds a line segment to join two points, and the game ends when a triangulation of the point set is completed. The player who completes more triangles than the other wins. In this paper, we formalize this game and investigate three restricted variants of this game. We first investigate a solitaire variant; for a given set of points and line segments with two integers t and k, the problem asks if you can obtain t triangles after k moves. We show that this variant is NP-complete in general. The second variant is the standard two player version, but the points are in convex position. In this case, the first player has a nontrivial winning strategy. The last variant is a natural extension of the second one; we have the points in convex position but one point inside. Then, it turns out that the first player has no winning strategy.------------------------------This is a preprint of an article intended for publication Journal ofInformation Processing(JIP). This preprint should not be cited. Thisarticle should be cited as: Journal of Information Processing Vol.25(2017) (online)DOI http://dx.doi.org/10.2197/ipsjjip.25.708------------------------------
  • Akira Suzuki, Masashi Kiyomi, Yota Otachi, Kei Uchizawa, Takeaki Uno
    Journal of Information Processing 25(8) 695-707 2017年  査読有り
    Hitori is a popular "pencil-and-paper" puzzle defined as follows. In n-hitori, we are given an n × n rectangular grid in which each square is labeled with a positive integer, and the goal is to paint a subset of the squares so that the following three rules are satisfied: Rule 1) No row or column has a repeated unpainted label; Rule 2) Painted squares are never (horizontally or vertically) adjacent; Rule 3) The unpainted squares are all connected (via horizontal and vertical connections). The grid is called an instance of n-hitori if it has a unique solution. In this paper, we introduce hitori number and maximum hitori numberwhich are defined as follows: For every integer n, hitori number h(n) is the minimum number of different integers used in an instance where the minimum is taken over all the instances of n-hitori. For every integer n, maximum hitori number $\bar{h}(n)$ is the maximum number of different integers used in an instance where the maximum is taken over all the instances of n-hitori. We then prove that ⎾(2n-1)/3⏋ ≤ h(n) ≤ 2⎾n/3⏋+1 for n ≥ 2 and ⎾(4n2-4n+11)/5⏋ ≤ $\bar{h}(n)$ ≤ (4n2+2n-2)/5 for n ≥ 3.------------------------------This is a preprint of an article intended for publication Journal ofInformation Processing(JIP). This preprint should not be cited. Thisarticle should be cited as: Journal of Information Processing Vol.25(2017) (online)DOI http://dx.doi.org/10.2197/ipsjjip.25.695------------------------------Hitori is a popular "pencil-and-paper" puzzle defined as follows. In n-hitori, we are given an n × n rectangular grid in which each square is labeled with a positive integer, and the goal is to paint a subset of the squares so that the following three rules are satisfied: Rule 1) No row or column has a repeated unpainted label; Rule 2) Painted squares are never (horizontally or vertically) adjacent; Rule 3) The unpainted squares are all connected (via horizontal and vertical connections). The grid is called an instance of n-hitori if it has a unique solution. In this paper, we introduce hitori number and maximum hitori numberwhich are defined as follows: For every integer n, hitori number h(n) is the minimum number of different integers used in an instance where the minimum is taken over all the instances of n-hitori. For every integer n, maximum hitori number $\bar{h}(n)$ is the maximum number of different integers used in an instance where the maximum is taken over all the instances of n-hitori. We then prove that ⎾(2n-1)/3⏋ ≤ h(n) ≤ 2⎾n/3⏋+1 for n ≥ 2 and ⎾(4n2-4n+11)/5⏋ ≤ $\bar{h}(n)$ ≤ (4n2+2n-2)/5 for n ≥ 3.------------------------------This is a preprint of an article intended for publication Journal ofInformation Processing(JIP). This preprint should not be cited. Thisarticle should be cited as: Journal of Information Processing Vol.25(2017) (online)DOI http://dx.doi.org/10.2197/ipsjjip.25.695------------------------------
  • Masashi Kiyomi, Yota Otachi
    INFORMATION PROCESSING LETTERS 116(9) 569-573 2016年9月  査読有り
  • Ei Ando, Akitoshi Kawamura, Masashi Kiyomi, Eiji Miyano, Hirotaka Ono
    Proceedings of 19th Japan-Korean Joint Workshop on Algorithms and Computation (WAAC2016) 71-1-71-4 2016年8月30日  
  • Masashi Kiyomi
    Encyclopedia of Algorithms 2016 1840-1842 2016年  招待有り
  • Masashi Kiyomi, Yoshio Okamoto, Yota Otachi
    DISCRETE APPLIED MATHEMATICS 198 303-306 2016年1月  査読有り
  • Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, Takeaki Uno
    THEORETICAL COMPUTER SCIENCE 586 81-94 2015年6月  査読有り
  • Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota Otachi, Pascal Schweitzer, Jun Tarui, Ryuhei Uehara
    ALGORITHMS AND COMPUTATION, ISAAC 2014 8889 553-564 2014年  査読有り
  • Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, Takeaki Uno
    FUN WITH ALGORITHMS 8496 364-375 2014年  査読有り
  • Takashi Horiyama, Masashi Kiyomi, Yoshio Okamoto, Ryuhei Uehara, Takeaki Uno, Yushi Uno, Yukiko Yamauchi
    FUN WITH ALGORITHMS 8496 230-239 2014年  査読有り
  • Masashi Kiyomi, Toshiki Saitoh, Ryuhei Uehara
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS E96D(3) 426-432 2013年3月  査読有り
  • Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7276 248-259 2012年  査読有り
  • Masashi Kiyomi, Toshiki Saitoh, Ryuhei Uehara
    Discrete Math., Alg. and Appl. 4(3) 1250039-1250039 2012年  査読有り
    The graph reconstruction conjecture is a long-standing open problem in graph theory. The conjecture has been verified for all graphs with at most 11 vertices. Further, the conjecture has been verified for regular graphs, trees, disconnected graphs, unit interval graphs, separable graphs with no pendant vertex, outer-planar graphs, and unicyclic graphs. We extend the list of graph classes for which the conjecture holds. We give a proof that bipartite permutation graphs are reconstructible.
  • Masashi Kiyomi, Toshiki Saitoh, Ryuhei Uehara
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS E94D(6) 1185-1189 2011年6月  査読有り
  • Jean Cardinal, Erik D. Demaine, Martin L. Demaine, Shinji Imahori, Tsuyoshi Ito, Masashi Kiyomi, Stefan Langerman, Ryuhei Uehara, Takeaki Uno
    GRAPHS AND COMBINATORICS 27(3) 341-351 2011年5月  査読有り
  • Yosuke Okayama, Masashi Kiyomi, Ryuhei Uehara
    Proceedings of the 23rd Annual Canadian Conference on Computational Geometry, Toronto, Ontario, Canada, August 10-12, 2011 2011年  査読有り
  • Masashi Kiyomi, Toshiki Saitoh, Ryuhei Uehara
    THEORETICAL COMPUTER SCIENCE 411(43) 3859-3866 2010年10月  査読有り
  • Toshiki Saitoh, Katsuhisa Yamanaka, Masashi Kiyomi, Ryuhei Uehara
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS E93D(7) 1816-1823 2010年7月  査読有り
  • Shuji Kijima, Masashi Kiyomi, Yoshio Okamoto, Takeaki Uno
    THEORETICAL COMPUTER SCIENCE 411(26-28) 2591-2601 2010年6月  査読有り
  • Masashi Kiyomi, Toshiki Saitoh, Ryuhei Uehara
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS 5942 125-135 2010年  査読有り
  • Masashi Kiyomi, Toshiki Saitoh, Ryuhei Uehara
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT II 6509 362-+ 2010年  査読有り
  • Ondrej Bílka, Kevin Buchin, Radoslav Fulek, Masashi Kiyomi, Yoshio Okamoto, Shin-ichi Tanigawa, Csaba D. Tóth
    Electr. J. Comb. 17(1) 2010年  査読有り
  • Toshiki Saitoh, Katsuhisa Yamanaka, Masashi Kiyomi, Ryuhei Uehara
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS 5431 177-+ 2009年  査読有り
  • Masashi Kiyomi, Toshiki Saitoh, Ryuhei Uehara
    COMPUTING AND COMBINATORICS, PROCEEDINGS 5609 106-115 2009年  査読有り
  • Shuji Kijima, Masashi Kiyomi, Yoshio Okamoto, Takeaki Uno
    COMPUTING AND COMBINATORICS, PROCEEDINGS 5092 458-+ 2008年  査読有り
  • Toshiki Saitoh, Masashi Kiyomi, Ryuhei Uehara
    Proceedings of the KOREA-JAPAN Joint Workshop on Algorithms and Computation (WAAC 2007) 121-126 2007年  
  • M Kiyomi, T Uno
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS E89D(2) 763-770 2006年2月  査読有り
  • Masashi Kiyomi, Shuji Kijima, Takeaki Uno
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE 4271 68-77 2006年  査読有り
  • Takeaki Uno, Masashi Kiyomi, Hiroki Arimura
    Open Source Data Mining Workshop on Frequent Pattern Mining Implementations 2005 2005年8月  査読有り
  • Masashi Kiyomi, Takeaki Uno, Tomomi Matsui
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3828 602-611 2005年  査読有り
  • Timothy Furtak, Masashi Kiyomi, Takeaki Uno, Michael Buro
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05) 132-137 2005年  査読有り
  • Takeaki Uno, Masashi Kiyomi, Hiroki Arimura
    FIMI '04, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Brighton, UK, November 1, 2004 2004年  査読有り
  • Masashi Kiyomi, Tomomi Matsui
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2063 229-240 2001年  査読有り

MISC

 23

書籍等出版物

 1
  • 清見 礼 (担当:分担執筆, 範囲:特集= 大学数学のキーポイント(前篇)アルゴリズム/情報数学の一例として pp.37-41)
    2019年3月

共同研究・競争的資金等の研究課題

 3