Faculty of Science and Technology

青柳 里果

アオヤギ サトカ  (Satoka Aoyagi)

基本情報

所属
成蹊大学 理工学部 理工学科 教授
学位
博士(工学)(早稲田大学)

連絡先
aoyagist.seikei.ac.jp
J-GLOBAL ID
200901091291128843
researchmap会員ID
5000010522

外部リンク

論文

 124
  • Md Foyzur Rahman, Ariful Islam, Md Monirul Islam, Md Al Mamun, Lili Xu, Takumi Sakamoto, Tomohito Sato, Yutaka Takahashi, Tomoaki Kahyo, Satoka Aoyagi, Kozo Kaibuchi, Mitsutoshi Setou
    International journal of molecular sciences 25(14) 2024年7月21日  
    Mass spectrometry imaging (MSI) is essential for visualizing drug distribution, metabolites, and significant biomolecules in pharmacokinetic studies. This study mainly focuses on imipramine, a tricyclic antidepressant that affects endogenous metabolite concentrations. The aim was to use atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-MSI combined with different dimensionality reduction methods to examine the distribution and impact of imipramine on endogenous metabolites in the brains of treated wild-type mice. Brain sections from both control and imipramine-treated mice underwent AP-MALDI-MSI. Dimensionality reduction methods, including principal component analysis, multivariate curve resolution, and sparse autoencoder (SAE), were employed to extract valuable information from the MSI data. Only the SAE method identified phosphorylcholine (ChoP) as a potential marker distinguishing between the control and treated mice brains. Additionally, a significant decrease in ChoP accumulation was observed in the cerebellum, hypothalamus, thalamus, midbrain, caudate putamen, and striatum ventral regions of the treated mice brains. The application of dimensionality reduction methods, particularly the SAE method, to the AP-MALDI-MSI data is a novel approach for peak selection in AP-MALDI-MSI data analysis. This study revealed a significant decrease in ChoP in imipramine-treated mice brains.
  • Satoka Aoyagi, Daisuke Hayashi, Yoshiharu Murase, Naoya Miyauchi, Akiko N. Itakura
    e-Journal of Surface Science and Nanotechnology 2023年2月25日  
  • Akiko N. ITAKURA, Yoshiharu MURASE, Taro YAKABE, Naoya MIYAUCHI, Masahiro KITAJIMA, Satoka AOYAGI
    Vacuum and Surface Science 64(12) 568-574 2021年12月10日  
  • Akiko N. Itakura, Naoya Miyauchi, Yoshiharu Murase, Taro Yakabe, Masahiro Kitajima, Satoka Aoyagi
    Scientific Reports 11(1) 2021年12月  
    <title>Abstract</title>The dynamics of hydrogen in metals with mixed grain structure is not well understood at a microscopic scale. One of the biggest issues facing the hydrogen economy is “hydrogen embrittlement” of metal induced by hydrogen entering and diffusing into the material. Hydrogen diffusion in metallic materials is difficult to grasp owing to the non-uniform compositions and structures of metal. Here a time-resolved “operando hydrogen microscope” was used to interpret local diffusion behaviour of hydrogen in the microstructure of a stainless steel with austenite and martensite structures. The martensite/austenite ratios differed in each local region of the sample. The path of hydrogen permeation was inferred from the time evolution of hydrogen permeation in several regions. We proposed a model of hydrogen diffusion in a dual-structure material and verified the validity of the model by simulations that took into account the transfer of hydrogen at the interfaces.
  • Satoka AOYAGI, Tomomi AKIYAMA, Natsumi SUZUKI, Naoya MIYAUCHI, Akiko N. ITAKURA
    Vacuum and Surface Science 64(10) 472-475 2021年10月10日  

MISC

 76

書籍等出版物

 9

講演・口頭発表等

 88

担当経験のある科目(授業)

 7

共同研究・競争的資金等の研究課題

 13

学術貢献活動

 1