理工学部 教員紹介

林 大介

ハヤシ ダイスケ  (Daisuke HAYASHI)

基本情報

所属
成蹊大学 理工学部 理工学科 助教
学位
博士(理学)(2020年3月 首都大学東京)

研究者番号
30890438
J-GLOBAL ID
202101016442608714
researchmap会員ID
R000027687

論文

 4
  • Daisuke Hayashi, Yusuke Nakai, Haruka Kyakuno, Yasumitsu Miyata, Kazuhiro Yanagi, Yutaka Maniwa
    Applied Physics Express 13(1) 015001-015001 2020年1月1日  査読有り
  • Daisuke Hayashi, Yusuke Nakai, Haruka Kyakuno, Naoya Hongo, Yasumitsu Miyata, Kazuhiro Yanagi, Yutaka Maniwa
    Japanese Journal of Applied Physics 58(7) 075003-075003 2019年7月1日  査読有り
  • Daisuke Hayashi, Yusuke Nakai, Haruka Kyakuno, Takahiro Yamamoto, Yasumitsu Miyata, Kazuhiro Yanagi, Yutaka Maniwa
    Applied Physics Express 9(12) 125103-125103 2016年12月1日  査読有り
    Doped single-wall carbon nanotube (SWCNT) films were prepared and their Seebeck coefficient (S) and electrical resistivity (ρ) were investigated as functions of carrier density. For heavy doping, a second maximum of S (S = 35 µV/K) was discovered, with its corresponding power factor, P = 85 µW/(m·K2), 6 times that of the first maximum for lightly doped films. Calculations for zigzag SWCNTs suggest that the thermoelectric performance can be effectively improved by controlling the multiplicity of the one-dimensional band and tuning the carrier density. This provides a new strategy for achieving higher performance at a lower cost than using high-purity semiconducting SWCNTs.
  • Daisuke Hayashi, Tomohiro Ueda, Yusuke Nakai, Haruka Kyakuno, Yasumitsu Miyata, Takahiro Yamamoto, Takeshi Saito, Kenji Hata, Yutaka Maniwa
    Applied Physics Express 9(2) 025102-025102 2016年2月1日  査読有り筆頭著者
    The Seebeck coefficient S and the electrical resistivity ρ of single-wall carbon nanotube (SWCNT) films were investigated as a function of the SWCNT diameter and carrier concentration. The S and ρ significantly changed in humid environments through p-type carrier doping. Experiments, combined with theoretical simulations based on the non-equilibrium Green’s function theory, indicated that the power factor P can be increased threefold by the enrichment of semiconducting SWCNTs, but the nanotube diameter has little effect. The improvement of the film resistivity strongly enhances the film thermoelectric performance, manifested as increasing the value of P above 1200 µW/(m·K2).

書籍等出版物

 1