Daisuke Hayashi, Tomohiro Ueda, Yusuke Nakai, Haruka Kyakuno, Yasumitsu Miyata, Takahiro Yamamoto, Takeshi Saito, Kenji Hata, Yutaka Maniwa
Applied Physics Express 9(2) 025102-025102 2016年2月1日 査読有り筆頭著者
The Seebeck coefficient S and the electrical resistivity ρ of single-wall carbon nanotube (SWCNT) films were investigated as a function of the SWCNT diameter and carrier concentration. The S and ρ significantly changed in humid environments through p-type carrier doping. Experiments, combined with theoretical simulations based on the non-equilibrium Green’s function theory, indicated that the power factor P can be increased threefold by the enrichment of semiconducting SWCNTs, but the nanotube diameter has little effect. The improvement of the film resistivity strongly enhances the film thermoelectric performance, manifested as increasing the value of P above 1200 µW/(m·K2).