研究者業績

鎌村 星平

カマムラ ショウヘイ  (Shohei Kamamura)

基本情報

所属
成蹊大学 理工学部 理工学科 准教授
学位
博士(国際情報通信学)(2013年3月 早稲田大学)

研究者番号
80604199
J-GLOBAL ID
202101015120487753
researchmap会員ID
R000028297

論文

 59
  • Shohei Kamamura, Yuhei Hayashi, Takayuki Fujiwara
    IEICE TRANSACTIONS ON COMMUNICATIONS E107-B(11) 728-738 2024年11月  査読有り筆頭著者
  • Shohei Kamamura, Yuki Takei, Masato Nishiguchi, Yuhei Hayashi, Takayuki Fujiwara
    IEEE Access 11 129818-129828 2023年11月  査読有り筆頭著者
  • Shohei Kamamura
    IEEE Access 10 79021-79028 2022年7月  査読有り筆頭著者
  • Shohei Kamamura, Yuhei Hayashi, Yuki Miyoshi, Takeaki Nishioka, Chiharu Morioka, Hiroyuki Ohnishi
    IEICE TRANSACTIONS ON COMMUNICATIONS E105-B(5) 512-521 2022年5月  査読有り筆頭著者
  • 鎌村星平
    成蹊大学理工学研究報告 58(2) 7-12 2022年3月  筆頭著者
  • Yukinao Hagi, Yuhei Hayashi, Shohei Kamamura, Takuji Tachibana
    IEICE ICETC 2021, P4-14 2021年11月  査読有り
  • Tomonori Yokono, Yuhei Hayashi, Shohei Kamamura, Takuji Tachibana
    IEICE ICETC 2021, P2-15 2021年11月  査読有り
  • Kouichi Genda, Mitsuru Abe, Shohei Kamamura
    IEICE Communications Express 9(12) 656-661 2020年12月  査読有り
  • Kouichi Genda, Mitsuru Abe, Shohei Kamamura
    APNOMS 2020 P4-3 2020年9月  査読有り
  • Kouji Hirata, Hiroshi Yamamoto, Shohei Kamamura, Toshiyuki Oka, Yoshihiko Uematsu, Hideki Maeda, Miki Yamamoto
    IEICE TRANSACTIONS ON COMMUNICATIONS E103-B(4) 363-374 2020年4月  査読有り
  • Kouji Hirata, Hiroshi Yamamoto, Shohei Kamamura, Toshiyuki Oka, Yoshihiko Uematsu, Hideki Maeda, Miki Yamamoto
    2019 IEEE ComSoc International Communications Quality and Reliability Workshop, CQR 2019 2019年4月1日  
    This paper proposes a traveling maintenance method as a new network maintenance model. For failure recovery, the proposed method utilizes permissible time, which keeps high availability, ensured by shared backup resources. In the proposed method, even though a failure occurs in a communication facility, maintenance staff waits for occurrence of successive failures in other communication facilities during the permissible time instead of immediately tackling the failure. Then the maintenance staff successively go to the communication facilities that have faulty devices and repair them. By doing so, the proposed method can reduce the amount of time that the maintenance staff consumes for fault recovery. Furthermore, this paper provides a system design that aims at optimizing the proposed traveling maintenance according to system requirements determined by the design philosophy of telecommunication networks. Through simulation experiments, we show the effectiveness of the proposed method.
  • Yoshihiko Uematsu, Shohei Kamamura, Hiroshi Yamamoto, Aki Fukuda, Rie Hayashi
    IEICE TRANSACTIONS ON COMMUNICATIONS E101-B(11) 2267-2276 2018年11月  査読有り
  • Shohei Kamamura, Aki Fukuda, Hiroki Mori, Rie Hayashi, Yoshihiko Uematsu
    IEICE TRANSACTIONS ON COMMUNICATIONS E101-B(7) 1661-1674 2018年7月  査読有り筆頭著者
  • Kouichi Genda, Aki Fukuda, Shohei Kamamura
    IEEE International Conference on Communications (ICC 2018) 2018年5月  査読有り
  • Shohei Kamamura, Aki Fukuda, Rie Hayashi, Yoshihiko Uematsu
    IEICE TRANSACTIONS ON COMMUNICATIONS E101-B(3) 805-815 2018年3月  査読有り筆頭著者
  • UEMATSU Yoshihiko, KAMAMURA Shohei, DATE Hiroki, YAMAMOTO Hiroshi, FUKUDA Aki, HAYASHI Rie, KODA Katsutoshi
    IEICE Transactions on Communications E101-B(2) 462-475 2018年2月  査読有り
    <p>An optical transport network is composed of optical transport systems deployed in thousands of office-buildings. As a common infrastructure to accommodate diversified communication services with drastic traffic growth, it is necessary not only to continuously convey the growing traffic but also to achieve high end-to-end communication quality and availability and provide flexible controllability in cooperation with service layer networks. To achieve high-speed and large-capacity transport systems cost-effectively, system configuration, applied devices, and the manufacturing process have recently begun to change, and the cause of failure or performance degradation has become more complex and diversified. The drastic traffic growth and pattern change of service networks increase the frequency and scale of transport-capacity increase and transport-network reconfiguration in cooperation with service networks. Therefore, drastic traffic growth affects both optical-transport-system configuration and its operational cycles. In this paper, we give an overview of the operational problems emerging in current nationwide optical transport networks, and based on trends analysis for system configuration and network-control schemes, we propose a vision of the future nationwide optical-transport-network architecture expressed using five target features.</p>
  • Hiroshi Yamamoto, K. Kitamura, M. Yokota, Shohei Kamamura, Rie Hayashi, Yoshihiko Uematsu
    IEICE Communications Express 6(12) 633-638 2017年12月  査読有り
  • Genda Kouichi, Fukuda Aki, Kamamura Shohei
    IEICE Communications Express 6(10) 572-577 2017年10月  査読有り
    <p>Physical-network-resource deployment to meet future traffic growth is a significant issue for network operators because it is related to the ground design of next generation networks. In this paper, we propose an effective heuristic decomposition method of physical-network-resource deployment considering the balance between the amount of additional network resources Q and operation-risk. We focus on decreasing the number of physical links with additional capacity Nu to reduce operation-risk. Numerical evaluations indicate that, with our method, pareto-optimal solutions between Q and Nu can be designed with a smaller Nu, more than 50% smaller, compared with a benchmark method that minimizes Q.</p>
  • Rie Hayashi, Hiroshi Yamamoto, Aki Fukuda, Shohei Kamamura, Yoshihiko Uematsu, Katsutoshi Koda
    PIL/ISOCORE iPoP 2017 T1-4 2017年6月  査読有り
  • Shohei Kamamura, Aki Fukuda, Hiroshi Yamamoto, Hiroki Date, Rie Hayashi, Yoshihiko Uematsu
    IEEE International Conference on Communications (ICC 2017) CQRM_IS02 2017年5月  査読有り筆頭著者
  • Shohei Kamamura, Rie Hayashi, Hiroki Date, Hiroshi Yamamoto, Takashi Miyamura, Yoshihiko Uematsu, Kouichi Genda
    IEICE TRANSACTIONS ON COMMUNICATIONS E100-B(1) 122-130 2017年1月  査読有り筆頭著者
  • Kamamura Shohei, Uematsu Yoshihiko, Genda Kouichi
    IEICE Communications Express 5(10) 359-364 2016年10月  査読有り筆頭著者
    <p>We propose relaxed computation for the non-bifurcation progressive disaster recovery problem. When massive failure occurs, failed components are gradually repaired since repair resources are limited. Though there are studies on disaster recovery problem to maximize the amount of recovered traffic considering this assumption, they are based on the maximum flow approach, where traffic bifurcation on an arbitrary node is allowed. This condition is not practical in an actual environment. We first formulate non-bifurcation progressive disaster recovery problem as 0-1 integer linear programming. Because the problem is NP-hard, we present a problem-decomposition method and obtain an improvement of 13% over the benchmark method.</p>
  • Genda Kouichi, Yamamoto Hiroshi, Kamamura Shohei
    IEICE Transactions on Communications E99-B(8) 1824-1834 2016年8月  査読有り
    When a massive network disruption occurs, repair of the damaged network takes time, and the recovery process involves multi stages. We propose a fast and flow-controlled multi-stage network recovery method that can determine the pareto-optimal recovery order of failed physical components reflecting the balance requirement between maximizing the total amount of traffic on all logical paths, called total network flow, and providing adequate logical path flows. The pareto-optimal problem is formulated by mixed integer linear programming (MIP). A heuristic algorithm, called the grouped-stage recovery order (GSR), is also introduced to solve the problem when the problem formulated by MIP is computationally intractable in a large-scale failure. The effectiveness of the proposed method was numerically evaluated. The results show that the pareto-optimal recovery order can be determined from the balance between total network flow and adequate logical path flows, the allocated minimum bandwidth of the logical path can be drastically improved while maximizing total network flow, and the proposed method with GSR is applicable to large-scale failures because a nearly optimal recovery order with less than 10% error rate can be determined within practical computation time.
  • Kouichi Genda, Shohei Kamamura
    IEEE International Conference on Communications (ICC 2016) CQRM_IS1-3 2016年6月  
  • 植松芳彦, 中川雅弘, 山本宏, 鎌村星平, 源田浩一, 片山勝
    電子情報通信学会論文誌(B) J99-B(4) 345-355 2016年4月  査読有り
  • Shohei Kamamura, Hiroki Mori, Daisaku Shimazaki, Kouichi Genda, Yoshihiko Uematsu
    IEEE Global Telecommunications Conference (Globecom 2015) 1-6 2015年12月  査読有り筆頭著者
  • Shohei Kamamura, Hiroshi Yamamoto, Yuki Koizumi, Shin’ichi Arakawa, Masayuki Murata
    IEICE TRANSACTIONS ON COMMUNICATIONS E98-B(11) 2269-2279 2015年11月  査読有り筆頭著者
  • Hiroshi Yamamoto, Shohei Kamamura, Rie Hayashi, Takafumi Hamano, Kouichi Genda
    IEICE APSITT 2015 1-3 2015年8月  査読有り
  • Kouichi Genda, Hiroshi Yamamoto, Shohei Kamamura
    IEICE Communications Express 4(8) 264-269 2015年8月  査読有り
  • Shigeyuki Yamashita, Daiki Imachi, Miki Yamamoto, Takashi Miyamura, Shohei Kamamura, Koji Sasayama
    IEICE TRANSACTIONS ON COMMUNICATIONS E98-B(4) 575-584 2015年4月  査読有り
  • 植松芳彦, 鎌村星平, 杉山隆太, 武田知典, 宮村崇, 笹山浩二
    電子情報通信学会論文誌(B) J98-B3(3) 255-265 2015年3月  査読有り
  • Yuichi Ohsita, Takashi Miyamura, Shin’ichi Arakawa, Shohei Kamamura, Daisaku Shimazaki, Kohei Shiomoto, Atsushi Hiramatsu, Masayuki Murata
    Computer Networks 76 242-258 2015年1月  査読有り
    One approach to accommodate a large and time-varying traffic is dynamical routing reconfiguration based on the traffic matrix (TM), which is obtained by monitoring the amounts of traffic between all node pairs. However, it is difficult to monitor and collect the amounts of traffic between all node pairs in a large network. Though reconfiguration methods only based on the amount of traffic on each link have been proposed to overcome this problem, these methods, require a large calculation time and cannot be applied to large networks. This paper discusses a dynamic routing reconfiguration method that can adapt routes to changes in traffic within a short period only based on the amount of traffic on each link. We introduce a hierarchical routing reconfiguration based on the monitored amount of traffic on each link to reduce the calculation time. Moreover, we also propose a method of aggregating traffic information that is suitable for hierarchical routing reconfiguration based on the monitored amount of traffic on each link. Our method aggregates traffic information so that the upper bounds of link utilization after route changes can be calculated by using the aggregated traffic information. Thus, the routing controller using the aggregated traffic information calculates the suitable routes without large link utilization by taking into consideration the upper bounds of the link utilization. This paper evaluates our method through simulations, where we demonstrated that the routing reconfiguration of each layer calculated suitable routes with short calculation times. Then, we reduced the link utilization immediately after traffic had changed by combining the routing reconfiguration of each layer. (C) 2014 Elsevier B.V. All rights reserved.
  • Shohei Kamamura, Daisaku Shimazaki, Kouichi Genda, Koji Sasayama, Yoshihiko Uematsu
    E98-B(1) 171-179 2015年1月  査読有り筆頭著者
  • Shohei Kamamura, Daisaku Shimazaki, Yoshihiko Uematsu, Kouichi Genda, Koji Sasayama
    IEEE International Conference on Communications (ICC 2014) 1308-1313 2014年6月  査読有り筆頭著者
  • Shohei Kamamura, Daisaku Shimazaki, Hiroki Mori, Koji Sasayama, Yuki Koizumi, Shin’ichi Arakawa, Masayuki Murata
    OSA/IEEE Optical Fiber Communications (OFC2014) 1-3 2014年3月  査読有り筆頭著者
  • Takashi Miyamura, Daisaku Shimazaki, Shin’ichi Arakawa, Yuki Koizumi, Shohei Kamamura, Koji Sasayama, Kohei Shiomoto, Masayuki Murata
    OSA European Conference and Exhibition on Optical Communication (ECOC 2013) 1-3 2013年9月  査読有り
  • Yuki Koizumi, Shin’ichi Arakawa, Shohei Kamamura, Daisaku Shimazaki, Takashi Miyamura, Atsushi Hiramatsu, Masayuki Murata
    IEEE/OSA OECC 2013 WQ3-4 2013年7月  査読有り
    We propose a virtual network topology (VNT) control method that is adaptive to environmental changes in a network. It is based on attractor selection, which models the biological systems that behave adaptively against changes in their surrounding environments. The simulation results indicate that our VNT control method adaptively responds to changes in network environments caused by node failure and constructs operational VNTs in more than 95% of simulation trials when 20% of nodes in the physical network fail simultaneously. © 2013 IEICE.
  • Shin’ichi Arakawa, Takashi Miyamura, Yuki Koizumi, Daisaku Shimazaki, Shohei Kamamura, K. Sasayama, Kohei Shiomoto, Masayuki Murata
    IEEE/OSA OECC 2013 WQ3-3 2013年7月  査読有り
    We investigate what kind of information should be exchanged for controlling multiple VNTs. Simulation results show number of reconfigurations to find good VNTs is significantly reduced with slightly increased, but still marginal, amount of information.
  • 鎌村星平, 島崎大作, 平松 淳, 中里秀則
    電子情報通信学会論文誌(B) J96-B(2) 48-58 2013年2月  査読有り筆頭著者
    1+1パスプロテクション網の保守時間制約を緩和する,冗長構成を維持する方式を提案する.1+1パスプロテクションでは,始終点ノード間にノードやリンクを共用しない二つの伝送パスを設定し,両パスに対してデータを同時転送することで網の高信頼化を実現する.一方,運用保守の観点では,装置や伝送路の故障により一方のパスが切断された場合には速やかに故障箇所を復旧することで稼動率目標値を維持する必要があり,運用保守コストが増加する課題がある.本論文では,冗長パス構成が一時的に維持できなくなった際に,新たな予備パスを動的に設定することで可能な限り1+1パスプロテクション構成を維持するための,制御アーキテクチャ及び経路計算アルゴリズムを提案し,計算機シミュレーションにより有効性を示す.
  • KAMAMURA Shohei, SHIMAZAKI Daisaku, HIRAMATSU Atsushi, NAKAZATO Hidenori
    IEICE transactions on information and systems E96-D(2) 184-192 2013年2月  査読有り筆頭著者
    This paper proposes an IP fast rerouting method which can be implemented in OpenFlow framework. While the current IP is robust, its reactive and global rerouting processes require the long recovery time against failure. On the other hand, IP fast rerouting provides a milliseconds-order recovery time by proactive and local restoration mechanism. Implementation of IP fast rerouting is not common in real systems, however; it requires the coordination of additional forwarding functions to a commercial hardware. We propose an IP fast rerouting mechanism using OpenFlow that separates control function from hardware implementation. Our mechanism does not require any extension of current forwarding hardware. On the contrary, increase of backup routes becomes main overhead of our proposal. We also embed the compression mechanism to our IP fast rerouting mechanism. We show the effectiveness of our IP fast rerouting in terms of the fast restoration and the backup routes compression effect through computer simulations.
  • KAMAMURA Shohei, SHIMAZAKI Daisaku, HIRAMATSU Atsushi, NAKAZATO Hidenori
    IEICE transactions on communications E95-B(12) 3811-3821 2012年12月  査読有り筆頭著者
    IP fast rerouting has widely been studied for realizing millisecond-order recovery on pure IP networks. This paper proposes IP fast rerouting using backup topologies against concurrent double failures. The main issue in recovering from multiple failures is avoiding forwarding loops. To avoid forwarding loops, we propose a deterministic forwarding algorithm, which estimates the concurrently occurring failures from the packet header information. We also propose an efficient backup topology design algorithm which is both loop-free and which reduces the number of backup topologies. Our key idea is preparing the adequate diversity of backup routes for arbitrary source and destination pairs by combination of backup topologies. For efficient computation of diverse routes, we propose a similarity comparison-based algorithm between the original topology and the backup topologies. Our algorithm can achieve nearly optimal loop-free restoration from double failures on realistic topologies without explicit failure notification.
  • Simon Tembo, Kenichi Yukimatsu, Ryota Takahashi, Shohei Kamamura, Takashi Miyamura, Kohei Shiomoto
    International Journal of Networks and Communications 2012年12月  査読有り
  • Koji Mizumoto, Shin’ichi Arakawa, Yuki Koizumi, Daisaku Shimazaki, Takashi Miyamura, Shohei Kamamura, Kohei Shiomoto, Atsushi Hiramatsu, Masayuki Murata
    International Symposium on Nonlinear Theory and its Applications (NOLTA 2012) 2012年10月  査読有り
  • Shohei Kamamura, Yuki Koizumi, Daisaku Shimazaki, Takashi Miyamura, Shin’ichi Arakawa, E. Oki, Kohei Shiomoto, Atsushi Hiramatsu, Masayuki Murata
    ITC2012 workshop, SAN'2012 (45) 2012年9月  査読有り筆頭著者
  • Takashi Miyamura, Y. Ohsita, Shohei Kamamura, Daisaku Shimazaki, Yuki Koizumi, Shin’ichi Arakawa, Kohei Shiomoto, Masayuki Murata
    IEEE/IEICE WTC 2012 TS-B3-4 2012年3月  査読有り
  • Shin’ichi Arakawa, Y. Minami, Takashi Miyamura, Yuki Koizumi, Shohei Kamamura, Daisaku Shimazaki, Kohei Shiomoto, A. Hiramatsu, Masayuki Murata
    IEEE/IEICE WTC 2012 PS-28 2012年3月  査読有り
  • Simon Tembo, Kenichi Yukimatsu, Shohei Kamamura, Takashi Miyamura, Kohei Shiomoto
    PS-02 2012年3月  査読有り
  • Shohei Kamamura, Daisaku Shimazaki, Takashi Miyamura, Kohei Shiomoto, A. Hiramatsu
    IEEE/IEICE WTC 2012 PS-09 2012年3月  査読有り筆頭著者
  • Simon Tembo, Kenichi Yukimatsu, Shohei Kamamura, Takashi Miyamura, Kohei Shiomoto, Atsushi Hiramatsu
    Communications and Network,Scientific Research 4(1) 73-82 2012年2月  査読有り
  • Shohei Kamamura, Yuki Koizumi, Takashi Miyamura, Shin’ichi Arakawa, Kohei Shiomoto, Masayuki Murata
    IEEE CNSM 2011 1-4 2011年10月  査読有り筆頭著者

MISC

 154

共同研究・競争的資金等の研究課題

 2

産業財産権

 61