Yoshiyuki Ohyama, Migiwa Sakurai
Journal of Knot Theory and Its Ramifications 28(12) 1950074-1950074 2019年10月 査読有り筆頭著者
Satoh and Taniguchi introduced the [Formula: see text]-writhe [Formula: see text] for each non-zero integer [Formula: see text], which is an invariant for virtual knots. The [Formula: see text]-writhes give the coefficients of some polynomial invariants for virtual knots including the index polynomial, the odd writhe polynomial and the affine index polynomial. It is obvious that the virtualization of a real crossing is an unknotting operation for virtual knots. The values of [Formula: see text]-writhes changed by some local moves are calculated. However for the virtualization, it is unknown. In this paper, we show that for any given non-zero integer [Formula: see text] and any given integer [Formula: see text], there exists a virtual knot whose unknotting number by the virtualization is one and the value of the [Formula: see text]-writhe equals [Formula: see text]. Namely, the virtualization of a real crossing changes the value of [Formula: see text]-writhe by any given integer [Formula: see text].