情報数理科学専攻

Sachi Yamaguchi

  (山口 幸)

Profile Information

Affiliation
School of Arts and Sciences, Tokyo Woman's Christian University
Degree
博士(理学)(Sep, 2009, 奈良女子大学)

Researcher number
20709191
J-GLOBAL ID
201801019793674326
researchmap Member ID
B000317801

Research Interests

 1

Committee Memberships

 2

Papers

 35
  • Yoh Iwasa, Sachi Yamaguchi
    Proceedings of the Royal Society B: Biological Sciences, 290(1990), Jan 11, 2023  Peer-reviewedInvited
    Marine animals show diverse and flexible sexual systems. Here, we review several advancements of theoretical studies made in the last decade. (i) Sex change in coral fishes is often accompanied by a long break in reproductive activity. The delay can be shortened by retaining the inactive gonad for the opposite sex. (ii) Barnacles adopt diverse sexual patterns. The game model was analysed assuming that newly settled larvae choose either growth or immediate reproduction and large individuals adjust male–female investments. (iii) Some parasitic barnacles produce larvae with sexual size dimorphism and others produce larvae with the sex determined after settlement on hosts. (iv) In some fish and many reptiles, sex is determined by the temperature experienced as eggs. The dynamics of sex hormones were studied when the enzymatic reaction rates were followed by the Arrhenius equation. The FMF pattern (male at intermediates temperature; female both at high and low temperatures) required some reactions with enhanced temperature dependence at higher temperatures. The game model provides a useful framework for understanding diverse sexual patterns if we incorporate various constraints, such as unpredictability, cost of trait change and social situations. For further developments, we need to consider constraints imposed by physiological and molecular mechanisms.
  • Yoh Iwasa, Sachi Yamaguchi
    Behavioral Ecology and Sociobiology, 76(4), Apr, 2022  Peer-reviewed
  • Yoh Iwasa, Sachi Yamaguchi
    Journal of theoretical biology, 533 110939-110939, Jan 21, 2022  Peer-reviewed
    In some species of separate sexes, males present a nuptial gift containing nutrition to their mate. Producing a large nuptial gift is a considerable cost to the male, but it may improve his siring success if the female reduces the likelihood to accept another male after receiving a large gift. The female may receive a direct benefit by accepting another male who provides an additional nuptial gift. Additionally, the female may receive an indirect fitness benefit via laying offspring sired by a male who is able to produce a large nuptial gift. We formalized the multivariate quantitative genetics model describing the coevolution of the size of nuptial gift produced by the male (x) and the female's propensity to engage in remating (y). We analyzed the model focusing two cases: [1] remating females receive no indirect fitness benefit, but enjoy direct benefit of nutrition; and [2] remating females receive no direct benefit, but enjoy an indirect fitness benefit due to a positive genetic correlation of x and y, which is possible if random mutations tend to make males produce small nuptial gifts. In both cases, the stable evolutionary equilibrium with neither nuptial gift nor remating (x-=y-=0) always exists. Another stable equilibrium may exist in which male produces nuptial gifts (x->0) and female engage in multiple mating (y->0). We discussed implications to the sexual conflict.
  • Yoh Iwasa, Yoichi Yusa, Sachi Yamaguchi
    Journal of theoretical biology, 537 111019-111019, Jan 11, 2022  Peer-reviewed
    Many marine invertebrates have a benthic adult life with planktonic long feeding larval stages (planktotrophy). In other species, planktonic larvae do not eat, and after a rather short period, they settle and initiate their benthic stages (lecithotrophy). Still other species skip planktonic larval stages altogether, and adults produce benthic offspring (direct development). In this paper, we develop an evolutionary game among different life-cycle types and examine the conditions for each life-cycle type to win in a seasonal environment. The growth rate and mortality of benthic individuals are the same among all three life-cycle types, the local habitat (patches) for benthic individuals have a finite longevity, and adults may engage in a limited dispersal just before breeding. Planktotrophy evolves if the planktonic stages are more efficient in terms of biomass gain than benthic life. Otherwise, lecithotrophy or direct development should evolve. Among them, direct development is more advantageous than lecithotrophy if the cost of having planktonic larvae is large, the habitat for benthic individuals is stable, and adults engage in some dispersal.
  • Yuka Uchiyama, Yoh Iwasa, Sachi Yamaguchi
    Journal of theoretical biology, 537 111016-111016, Jan 10, 2022  Peer-reviewed
    Fish live in water with a different osmotic pressure from that in the body. Their gills have chloride cells that transport ions to maintain an appropriate level of osmotic pressure in the body. The direction of ion transport is different between seawater and freshwater. There are two types of chloride cells that specialize in unidirectional transport and generalist cells that can switch their function quickly in response to environmental salinity. In species that experience salinity changes throughout life (euryhaline species), individuals may replace some chloride cells with cells of different types upon a sudden change in environmental salinity. In this paper, we develop a dynamic optimization model for the chloride cell composition of an individual living in an environment with randomly fluctuating salinity. The optimal solution is to minimize the sum of the workload of chloride cells in coping with the difference in osmotic pressure, the maintenance cost, and the temporal cost due to environmental change. The optimal fraction of generalist chloride cells increases with the frequency of salinity changes and the time needed for new cells to be fully functional but decreases with excess maintenance cost.

Misc.

 1

Books and Other Publications

 6

Presentations

 6

Teaching Experience

 18

Research Projects

 10

Social Activities

 4

教育内容やその他の工夫

 6
  • Date(From)
    2022/06
    Subjcet
    生物学実験の実施(対面授業移行後)
    Summary
    対面授業への移行に伴い、生物学概論および現代生物学Bにおいて、実験を実施している。 ①生物学概論:植物細胞と動物細胞の観察、細胞分裂の観察 ②現代生物学B:DNA抽出実験とDNA二重らせん模型の組み立て
  • Date(From)
    2022/04
    Subjcet
    google classroomに授業動画とPDF資料を公開、希望者に授業資料の印刷版を配布(対面授業移行後)
    Summary
    対面授業に移行後も、授業動画(授業時にzoomで録画)とPDF資料を授業期間中公開している。希望者には授業資料の印刷版を配布している。 授業名:*生物と環境(動物と環境)、生物学概論、現代生物学B、数理生物学、*自然環境と人間社会、生物学特論B、シミュレーションD ※ただし*をつけた科目については、総合教養科目で受講者数が多いため、印刷版の配布はなしにしている。
  • Date(From)
    2022/04
    Subjcet
    小問(授業理解達成度を見る)および小問に関連した生物学の身近な話題や最新の研究知見の説明(対面授業移行後)
    Summary
    担当授業(以下を参照)で、学生の理解度を測るため、授業で小問を課している。(前期科目では毎回、後期科目では隔週もしくは数回授業をしてから1回小問を課す。)小問提出はgoogle classroomを使っており、質問も同時に受け付けている。小問の解説と質問に対する答えの解説は、次回授業の最初に行っている。また小問に関連した生物小話を行っている。 前期授業名:生物と環境(動物と環境)、生物学概論、数理生物学、シミュレーションD 後期授業名:自然環境と人間社会、生物学特論B、現代生物学B
  • Date(From)
    2020/05
    Date(To)
    2022/03
    Subjcet
    google classroomに授業動画とPDF資料を公開(遠隔授業実施時)
    Summary
    授業動画とPDF資料を授業期間中公開している。 授業名:生物と環境(動物と環境)、生物学概論、現代生物学B、数理生物学、自然環境と人間社会、現代生物学A、生物学特論A *シミュレーションD(*は授業資料PDFのみ公開)
  • Date(From)
    2020/05
    Date(To)
    2022/03
    Subjcet
    小問(授業理解達成度を見る)(遠隔授業実施時)
    Summary
    担当授業(以下を参照)で、学生の理解度を測るため、毎回の授業で小問を課している。小問提出はgoogle classroomを使っており、質問も同時に受け付けている。小問の解説と質問に対する答えの解説は、次回授業の最初に行っている。 授業名:生物と環境(動物と環境)、生物学概論、現代生物学B、数理生物学、自然環境と人間社会、現代生物学A、生物学特論A、シミュレーションD
  • Date(From)
    2020/04
    Subjcet
    情報理学講究受講者(山口ゼミ生)の卒業研究を原著論文にして国際誌に投稿、掲載(査読有)
    Summary
    ゼミ生の卒業研究を原著論文にして、国際誌に投稿し、掲載されている。 Uchiyama et al. (2022) J. Theo. Biol. 537:111016 (2020年度ゼミ生の成果) また2021年度ゼミ生の卒業研究の成果も原著論文にまとめる準備をしている。