情報数理科学専攻

劉 雪峰

リユウ シユウフオン  (LIU XUEFENG)

基本情報

所属
東京女子大学 現代教養学部数理科学科情報理学専攻 教授
学位
学士(2003年7月 中国科学技術大学)
修士(数理科学)(2006年3月 東京大学)
博士(数理科学)(2009年3月 東京大学)

研究者番号
50571220
ORCID ID
 https://orcid.org/0000-0003-4546-1620
J-GLOBAL ID
200901049358442703
researchmap会員ID
6000019908

外部リンク

有限要素法、特に偏微分作用素の固有値評価に関する研究を行っている。

主要な学歴

 2

論文

 30
  • Taiga Nakano, Qin Li, Meiling Yue, Xuefeng Liu
    Computational Methods in Applied Mathematics 2024年4月1日  
  • Xuefeng Liu, Tomáš Vejchodský
    Journal of Computational and Applied Mathematics 429 2023年9月  査読有り
    For conforming finite element approximations of the Laplacian eigenfunctions, a fully computable guaranteed error bound in the L2 norm sense is proposed. The bound is based on the a priori error estimate for the Galerkin projection of the conforming finite element method, and has an optimal speed of convergence for the eigenfunctions with the worst regularity. The resulting error estimate bounds the distance of spaces of exact and approximate eigenfunctions and, hence, is robust even in the case of multiple and tightly clustered eigenvalues. The accuracy of the proposed bound is illustrated by numerical examples.
  • Taiga Nakano, Xuefeng Liu
    Journal of Computational and Applied Mathematics 425 2023年6月  査読有り
    This paper considers the finite element solution of the boundary value problem of Poisson's equation and proposes a guaranteed local error estimation based on the hypercircle method. Compared to the existing literature on qualitative error estimation, the proposed error estimation provides an explicit and sharp bound for the approximation error in the subdomain of interest, and its efficiency can be enhanced by further utilizing a non-uniform mesh. Such a result is applicable to problems without H2-regularity, since it only utilizes the first order derivative of the solution. The efficiency of the proposed method is demonstrated by numerical experiments for both convex and non-convex 2D domains with uniform or non-uniform meshes.
  • Xuefeng Liu, Tomáš Vejchodský
    Numerische Mathematik 152(1) 183-221 2022年9月  査読有り
    For compact self-adjoint operators in Hilbert spaces, two algorithms are proposed to provide fully computable a posteriori error estimate for eigenfunction approximation. Both algorithms apply well to the case of tight clusters and multiple eigenvalues, under the settings of target eigenvalue problems. Algorithm I is based on the Rayleigh quotient and the min-max principle that characterizes the eigenvalue problems. The formula for the error estimate provided by Algorithm I is easy to compute and applies to problems with limited information of Rayleigh quotients. Algorithm II, as an extension of the Davis–Kahan method, takes advantage of the dual formulation of differential operators along with the Prager–Synge technique and provides greatly improved accuracy of the estimate, especially for the finite element approximations of eigenfunctions. Numerical examples of eigenvalue problems of matrices and the Laplace operators over convex and non-convex domains illustrate the efficiency of the proposed algorithms.

書籍等出版物

 3

担当経験のある科目(授業)

 24

共同研究・競争的資金等の研究課題

 17

その他

 1