研究者業績

鈴木 哲

Satoru Suzuki

基本情報

所属
兵庫県立大学 高度産業科学技術研究所 教授
学位
博士(理学)(1999年6月 東北大学)

研究者番号
00393744
ORCID ID
 https://orcid.org/0000-0002-7631-5346
J-GLOBAL ID
201801018946208390
Researcher ID
G-3584-2011
researchmap会員ID
B000328527

経歴

 2

論文

 149
  • Masaya Takeuchi, Satoru Suzuki, Masaki Nakamura, Takashi Hata, Yusuke Nishiuchi, Kaori Tada, Noriaki Toyoda
    Japanese Journal of Applied Physics 2024年6月7日  
    Abstract We would like to improve detection sensitivity by making photoelectron transmission window (SiNx membrane) of liquid cell ultra-thin for liquid measurement using XPS or X-ray PEEM at UHV. In this study, thinning of the membrane using gas cluster ion beams (GCIB) was demonstrated and the burst pressure was compared with those thinned with atomic 400 eV Ar+ ions. It was shown that SiNx membranes thinned by GCIB was 2.5 times higher burst pressure than the Ar+ ions. In addition, improvement of sensitivity of characteristic X-ray from liquid-water induced by low-energy electrons was investigated. By using 4.5 nm thick SiNx membrane etched by GCIB, the X-ray intensity became 1.6 times higher than those from 11 nm thick pristine membrane at electron beam energy of 1.5 keV. This result showed good agreement with Monte Carlo simulation results of the electron-beam-induced X-ray emission from liquid-water beneath SiNx membrane.
  • S. Nakata, R. Takahashi, R. Matsumoto, L.-F. Zhang, H. Sumida, S. Suzuki, T. C. Fujita, M. Kawasaki, H. Wadati
    Applied Physics Letters 124(202405) 1-5 2024年5月13日  査読有り
  • 鈴木 哲
    表面と真空 67(3) 106-111 2024年3月10日  査読有り招待有り筆頭著者最終著者責任著者
  • Kaito Fujitani, Satoru Suzuki, Mitsuyoshi Kishihara, Yuichi Utsumi
    Journal of Applied Physics 135 034901 2024年1月21日  査読有り
  • Kaito Fujitani, Yuichi Utsumi, Akinobu Yamaguchi, Hirosuke Sumida, Satoru Suzuki
    Applied Surface Science 637 157891-1-157891-9 2023年11月15日  査読有り最終著者責任著者
    We investigated the chemical composition of polytetrafluoroethylene (PTFE) under bending stress using hard X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy. Our measurements revealed the breaking of C–F bonds in the side chains and conspicuous observation of C–C bonds in the main chain only on the surface under bending stress (carbon-rich). Moreover, we found that the breaking of C–F bonds was dependent on the tensile strain caused by bending. Investigating the effects of tensile and compressive stresses induced by bending, the tensile stress was found to significantly contribute to the breaking of C–F bonds. However, the C–F bonds were hardly broken under uniaxial tensile stress. These findings suggest that tensile stress due to bending, rather than uniaxial tensile stress, causes significant C–F bond scission in the PTFE. This result is attributed to the force acting toward the center of curvature owing to bending, which does not occur under uniaxial tensile stress. Our results provide a better understanding of microscopic PTFE surfaces subjected to flexural tensile stress for nanofluidics and medical engineering applications. Additionally, our findings suggest that carbon-rich structures can be easily fabricated, which may lead to the development of processes for fabrication of two-dimensional materials.

MISC

 18

講演・口頭発表等

 35

担当経験のある科目(授業)

 6

所属学協会

 5

共同研究・競争的資金等の研究課題

 5

産業財産権

 28

学術貢献活動

 3

社会貢献活動

 2