CVClient

玉置 卓

タマキ スグル  (Suguru Tamaki)

基本情報

所属
兵庫県立大学 大学院情報科学研究科 / 社会情報科学部 教授
学位
博士 (情報学)(京都大学)

研究者番号
40432413
ORCID ID
 https://orcid.org/0000-0002-8105-2368
J-GLOBAL ID
201401071504415573
researchmap会員ID
7000008755

外部リンク

論文

 42
  • Harry Buhrman, Sevag Gharibian, Zeph Landau, François Le Gall, Norbert Schuch, Suguru Tamaki
    Physical Review Letters 135(3) 030601 2025年7月15日  査読有り
  • Suguru Tamaki
    Algorithmic Foundations for Social Advancement: Recent Progress on Theory and Practice 307-326 2025年3月  査読有り
  • Yuya Higashikawa, Naoki Katoh, Guohui Lin, Eiji Miyano, Suguru Tamaki, Junichi Teruyama, Binhai Zhu
    FCT 262-275 2023年9月  査読有り
  • Tomoyuki Morimae, Suguru Tamaki
    Quantum 4(329) 1-12 2020年9月24日  査読有り
    It is known that several sub-universal quantum computing models, such as the IQP model, the Boson sampling model, the one-clean qubit model, and the random circuit model, cannot be classically simulated in polynomial time under certain conjectures in classical complexity theory. Recently, these results have been improved to ``fine-grained" versions where even exponential-time classical simulations are excluded assuming certain classical fine-grained complexity conjectures. All these fine-grained results are, however, about the hardness of strong simulations or multiplicative-error sampling. It was open whether any fine-grained quantum supremacy result can be shown for a more realistic setup, namely, additive-error sampling. In this paper, we show the additive-error fine-grained quantum supremacy (under certain complexity assumptions). As examples, we consider the IQP model, a mixture of the IQP model and log-depth Boolean circuits, and Clifford+<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>T</mml:mi></mml:math> circuits. Similar results should hold for other sub-universal models.
  • Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, Junichi Teruyama
    Journal of Computer and System Sciences 105 87-103 2019年11月  査読有り

MISC

 9

書籍等出版物

 3

講演・口頭発表等

 33

共同研究・競争的資金等の研究課題

 13