研究者業績

八木 直美

ヤギ ナオミ  (Naomi Yagi)

基本情報

所属
兵庫県立大学 先端医療工学研究所 准教授
学位
博士(工学)(2014年3月 兵庫県立大学)

J-GLOBAL ID
201401020876802456
researchmap会員ID
7000009906

論文

 61
  • Y. Adachi, N. Yagi, Y. Ohara, K. Doi, Y. Takaya, K. Yamaguchi, S. Mizuta, M. Doshida, T. Takeuchi, H. Matsubayashi, T. Ishikawa, Y. Hata
    ICMLC&ICWAPR2024 2024年9月  査読有り
  • A. Yoshida, N. Yagi, Y. Fujii, H. Shibutani, Y. Kobayashi, Y. Saji, Y. Sakai, Y. Hata
    ICMLC&ICWAPR2024 2024年9月  査読有り
  • Kenjiro Kunieda, Saori Suzuki, Satoe Naganuma, Keishi Okamoto, Tomohisa Ohno, Takashi Shigematsu, Naomi Yagi, Yoshitaka Oku, Ichiro Fujishima
    Dysphagia 2024年8月17日  
    Vacuum swallowing is a unique method for improving the pharyngeal passage of a bolus by creating subatmospheric negative pressure in the esophagus. However, whether healthy individuals and other patients with dysphagia can reproduce vacuum swallowing remains unclear. Therefore, this study aimed to assess whether healthy individuals verified using high-resolution manometry (HRM) could reproduce vacuum swallowing and evaluate its safety using a swallowing and breathing monitoring system (SBMS). Two healthy individuals who mastered vacuum swallowing taught this method to 12 healthy individuals, who performed normal and vacuum swallowing with 5 mL of water five times each. The minimum esophageal pressure and the maximum pressure of the lower esophageal sphincter (LES) were evaluated during each swallow using the HRM. Additionally, respiratory-swallowing coordination was evaluated using the SBMS. Ten individuals reproduced vacuum swallowing, and a total of 50 vacuum swallows were analyzed. The minimum esophageal pressure (-15.0 ± 4.9 vs. -46.6 ± 16.7 mmHg; P < 0.001) was significantly lower, and the maximum pressure of the LES (25.4 ± 37.7 vs. 159.5 ± 83.6 mmHg; P < 0.001) was significantly higher during vacuum swallowing. The frequencies of the I-SW and SW-I patterns in vacuum swallowing were 38.9% and 0%, respectively, using the SBMS. Vacuum swallowing could be reproduced safely in healthy participants with instruction. Therefore, instructing exhalation before and after vacuum swallowing is recommended to prevent aspiration.
  • Takuya Yoshida, Naomi Yagi, Takenori Ogawa, Ayako Nakanome, Akira Ohkoshi, Yukio Katori, Yoshitaka Oku
    PloS one 19(7) e0305560 2024年7月  査読有り
    PURPOSE: Swallowing dysfunction and the risk of aspiration pneumonia are frequent clinical problems in the treatment of head and neck squamous cell carcinomas (HNSCCs). Breathing-swallowing coordination is an important factor in evaluating the risk of aspiration pneumonia. To investigate breathing-swallowing discoordination after chemoradiotherapy (CRT), we monitored respiration and swallowing activity before and after CRT in patients with HNSCCs. METHODS: Non-invasive swallowing monitoring was prospectively performed in 25 patients with HNSCCs treated with CRT and grade 1 or lower radiation-induced dermatitis. Videoendoscopy, videofluoroscopy, Food Intake LEVEL Scale, and patient-reported swallowing difficulties were assessed. RESULTS: Of the 25 patients selected for this study, four dropped out due to radiation-induced dermatitis. The remaining 21 patients were analyzed using a monitoring system before and after CRT. For each of the 21 patients, 405 swallows were analyzed. Swallowing latency and pause duration after the CRT were significantly extended compared to those before the CRT. In the analysis of each swallowing pattern, swallowing immediately followed by inspiration (SW-I pattern), reflecting breathing-swallowing discoordination, was observed more frequently after CRT (p = 0.0001). In 11 patients, the SW-I pattern was observed more frequently compared to that before the CRT (p = 0.00139). One patient developed aspiration pneumonia at 12 and 23 months after the CRT. CONCLUSION: The results of this preliminary study indicate that breathing-swallowing discoordination tends to increase after CRT and could be involved in aspiration pneumonia. This non-invasive method may be useful for screening swallowing dysfunction and its potential risks.
  • Rashedur Rahman, Naomi Yagi, Keigo Hayashi, Akihiro Maruo, Hirotsugu Muratsu, Syoji Kobashi
    Scientific reports 14(1) 8004-8004 2024年4月5日  査読有り
    Pelvic fractures pose significant challenges in medical diagnosis due to the complex structure of the pelvic bones. Timely diagnosis of pelvic fractures is critical to reduce complications and mortality rates. While computed tomography (CT) is highly accurate in detecting pelvic fractures, the initial diagnostic procedure usually involves pelvic X-rays (PXR). In recent years, many deep learning-based methods have been developed utilizing ImageNet-based transfer learning for diagnosing hip and pelvic fractures. However, the ImageNet dataset contains natural RGB images which are different than PXR. In this study, we proposed a two-step transfer learning approach that improved the diagnosis of pelvic fractures in PXR images. The first step involved training a deep convolutional neural network (DCNN) using synthesized PXR images derived from 3D-CT by digitally reconstructed radiographs (DRR). In the second step, the classification layers of the DCNN were fine-tuned using acquired PXR images. The performance of the proposed method was compared with the conventional ImageNet-based transfer learning method. Experimental results demonstrated that the proposed DRR-based method, using 20 synthesized PXR images for each CT, achieved superior performance with the area under the receiver operating characteristic curves (AUROCs) of 0.9327 and 0.8014 for visible and invisible fractures, respectively. The ImageNet-based method yields AUROCs of 0.8908 and 0.7308 for visible and invisible fractures, respectively.

MISC

 32
  • 八木 直美
    日本バイオレオロジー学会誌(B&R) 37(2) 9-14 2024年4月  筆頭著者責任著者
  • 岡本 一伯, 森 健太郎, 徳永 義光, 佐久本 哲郎, 八木 直美, 畑 豊
    バイオメディカル・ファジィ・システム学会年次大会講演論文集 35回 np1-np4 2022年12月  
  • 小橋 昌司, 杉山 宗弘, 鵜飼 和歳, ラシェドーララーマン, 八木 直美, 林 圭吾, 圓尾 明弘, 村津 裕嗣
    日本医学放射線学会秋季臨床大会抄録集 59回 S450-S450 2022年9月  
  • 山本侃利, 藤田大輔, RAHMAN Rashedur, 八木直美, 林圭吾, 圓尾明宏, 村津裕嗣, 小橋昌司
    電子情報通信学会技術研究報告(Web) 121(347(MI2021 42-89)) 2022年3月  
  • Takumi Ueyama, Yohei Kumabe, Keisuke Oe, Tomoaki Fukui, Takahiro Niikura, Ryosuke Kuroda, Masakazu Morimoto, Naomi Yagi, Yutaka Hata
    International Conference on Machine Learning and Cybernetics(ICMLC) 259-264 2022年  査読有り
  • Kohei Hayashi, Naomi Yagi, Yutaka Hata, Yoshiaki Saji, Yoshitada Sakai
    International Conference on Machine Learning and Cybernetics(ICMLC) 254-258 2022年  査読有り
  • Naomi Yagi, Yutaka Hata, Yoshitada Sakai
    International Conference on Machine Learning and Cybernetics(ICMLC) 204-208 2022年  査読有り筆頭著者
  • Naoto Yamamoto, Daisuke Fujita, Md. Rashedur Rahman, Naomi Yagi, Keigo Hayashi, Akihiro Maruo, Hirotsugu Muratsu, Syoji Kobashi
    4th IEEE Global Conference on Life Sciences and Technologies(LifeTech) 170-171 2022年  査読有り
  • 山本 侃利, 藤田 大輔, Rahman Rashedur, 八木 直美, 林 圭吾, 圓尾 明宏, 村津 裕嗣, 小橋 昌司
    日本医用画像工学会大会予稿集 40回 203-207 2021年10月  
    骨粗鬆症による高齢者脆弱性骨盤骨折は,外傷に因らず,自覚症状が顕著でなく,CT画像上でその検出が容易ではないため,発見後の治療が遅れ,転位が進行し,機能的予後回復が得られない場合がある.そこで,医師の診断能向上のため,CT画像から骨盤脆弱性骨折を自動的に検出する医師の診断支援システムが求められている.従来手法では,単純X線画像やCT画像による2次元画像解析に基づくため,3次元的に分布する微小な脆弱性骨折の検出が困難であった.そこで我々は,新しい手法として,3次元CT画像を用いて,骨表から骨内部にかけて3次元的に骨折有無を探索するボーリング調査法を模した自動骨盤骨折検出法(BSFD法;boring survey based fracture detection)を提案した.本研究では,BSFD法における特徴量抽出法について検討する.BSFD法では,3次元CT画像から骨表同値面を求め,同値面上の各点にCT値で構成される3次元特徴ベクトルを割り当て,学習済みの3次元畳み込みニューラルネットワーク(CNN)モデルにより,各点において骨折確率を求める.各点でアノテーションされた骨折領域からの3次元Chamfer距離から求められた骨折確率を用いて,CNNを学習する.ここで,3次元特徴ベクトルに関して,領域範囲の拡大を比較検討して,検出性能を評価する.提案手法を110人の被験者のデータで検証した結果,学習データではAUC0.90,評価データではAUC0.84を確認した.(著者抄録)
  • 圓尾 明弘, 林 圭吾, 井口 貴雄, 村津 裕嗣, 鵜飼 和歳, 八木 直美, 小橋 昌司
    骨折 43(Suppl.) S82-S82 2021年7月  
  • Yuma Iseri, Yutaka Hata, Naomi Yagi, Yoshiaki Saji, Yoshitada Sakai
    2021 World Automation Congress(WAC) 248-253 2021年  査読有り
  • Shuri Nakamura, Yutaka Hata, Naomi Yagi, Naoko Kawamura, Hideki Kashioka, Toshio Yanagida, Masayuki Hirata, Hitoshi Maezawa, Yoshitada Sakai
    5th IEEE International Conference on Cybernetics(CYBCONF) 73-78 2021年  査読有り
  • 山本侃利, 藤田大輔, RAHMAN Rashedur, 八木直美, 林圭吾, 圓尾明宏, 村津裕嗣, 小橋昌司
    ファジィシステムシンポジウム講演論文集(CD-ROM) 37th 2021年  
  • 山本侃利, RASHEDUR Rahman, 八木直美, 林圭吾, 丸尾明宏, 村津裕嗣, 小橋昌司
    日本生体医工学会大会プログラム・抄録集(Web) 60th 2021年  
  • 圓尾明弘, 林圭吾, 井口貴雄, 村津裕嗣, 鵜飼数歳, 八木直美, 小橋昌司
    骨折(Web) 43(Supplement (CD-ROM)) 2021年  
  • 元木 康太, MAHDI Fahad Parvez, 八木 直美, 新居 学, 小橋 昌司
    バイオメディカル・ファジィ・システム学会大会講演論文集 33 30-35 2020年10月31日  
  • 山本 侃利, Rahman Rashedur, 八木 直美, 林 圭吾, 丸尾 明宏, 村津 裕嗣, 小橋 昌司
    バイオメディカル・ファジィ・システム学会年次大会講演論文集 33回 36-42 2020年10月  
    撮影された横断CT画像から骨盤部分に対して骨折を自動検出する手法を提案した。提案法を103症例の被験者データに適用した。まず、学習データ生成のため、立体表面に対する新しいアノテーション法として立体アノテーション法を考案した。これにより、複数断面画像に連続する三次元的な骨折を効率的にアノテーションすることが可能とした。次に、骨折の自動検出法として骨表面から骨内部のCT値分布を特徴ベクトル化する手法を提案し、これをCNNによりクラス識別する新しい骨折検出法を提案した。各被験者において骨折クラスデータ数と非骨折クラスデータ数は異なり、総数で骨折クラスデータが約174000個、非骨折クラスデータは約294000個であった。検出精度結果はtrainingで95.0%、validationで69.4%となった。また、訓練データにおいて適合率96.6%、再現率89.7%、特異度98.2%となり、検証データでは適合率60.0%、再現率60.4%、特異度75.0%であった。
  • 小橋昌司, 八木直美, 平中崇文
    臨床整形外科 55(8) 2020年  
  • 大江啓介, 隈部洋平, 新倉隆宏, 福井友章, 黒田良祐, 畑豊, 森本雅和, 八木直美, 小矢美晴
    日本整形外科学会雑誌 94(8) S1918-S1918 2020年  
  • 久保 有輝, 新居 学, 無籐 智之, 田中 洋, 乾 浩明, 八木 直美, 信原 克哉, 小橋 昌司
    バイオメディカル・ファジィ・システム学会大会講演論文集 32 B2-2 2019年11月23日  
  • 八木直美
    IEEE関西支部勉強会・講演会 2019年9月  招待有り
  • 西尾 祥一, Hossain Belayat, 八木 直美, 新居 学, 平中 崇文, 小橋 昌司
    日本医用画像工学会大会予稿集 38回 492-497 2019年7月  
    整形外科手術は腹腟鏡手術や開腹手術と比較して手術工程および使用する手術器具が多く,外科手術中に医療器具の受け渡しを行う看護師は大きな負担を強いられている.我々は過去に人工膝関節置換術を対象とした整形外科手術における手術室看護師を支援するためのナビゲーションシステムを提案した.この研究では畳み込みニューラルネットワークを用いて手術画像全体に基づいた画像認識により手術工程の認識を試みたが,実用化に必要とされる精度には及ばなかった.本研究では整形外科手術における手術工程の認識精度の改善を実現するために,手術映像から取得したフレーム毎に物体検出(YOLO)を行い,器具のクラス情報と位置座標を検出する.スマートグラス(眼鏡型のデバイス)を用いて記録した整形外科手術映像は手術間で照明環境や撮影角度が大きく異なっており,それらの影響を低減させるための最適なデータの前処理法やデータ拡張法を検討した.(著者抄録)
  • 永見慎輔, 佐藤晋, 越久仁敬, 佐藤篤靖, 田辺直也, 八木直美, 福永真哉, 平井豊博, 室繁郎
    日本呼吸器学会誌(Web) 8 2019年  
  • 八木直美
    立石科学技術振興財団助成研究成果集(Web) (26) 2017年  
  • Syoji Kobashi, Md. Atiqur Rahman Ahad, Namkug Kim, Yubing Tong, Naomi Yagi
    International Journal of Innovative Computing, Information and Control 12(4) 1351-1352 2016年8月1日  
  • N. Yagi, S. Imawaki, T. Ishikawa, Y. Hata
    Advances in Intelligent Systems and Computing 137-146 2014年4月  筆頭著者
  • 八木 直美, 永見 慎輔, 上野 博司, 家邉 徹, 尾家 慶彦, 越久 仁敬
    自動制御連合講演会講演論文集 57 2002-2005 2014年  
    Dysphagia is a common symptom in many neurological disorders of the swallowing function. In the current clinical practice, diagnosis of dysphagia is based on video fluorographic images of the bolus movement. Although it is the gold standard technique, but patients cannot be subjected to it on a daily/nightly basis because of X-ray radiation exposure. Therefore, the present study proposes a noninvasive biomechanical measurement techniques to detect the phases of swallowing based on acoustic frequency factors and respiratory flow. As the results, the proposed algorithm performed a high specificity of 86.36 \%. We suggest that the significant increase in reliability was caused by the combined appraisal of two factors from sound signal and breathing information.
  • 八木直美
    電気評論 99(12) 2014年  
  • Yoshitada Sakai, Akira Hashiramoto, Yoshiko Kawasaki, Takaichi Okano, Takahiro Takeda, Naomi Yagi, Yutaka Hata
    ARTHRITIS AND RHEUMATISM 65 S895-S895 2013年10月  
  • 八木 直美, 大城 宜哲, 石川 治, 畑 豊
    インテリジェントシステム・シンポジウム講演論文集 2011(21) 247-250 2011年9月1日  
    In the human brain diagnostic system, the imaging of the brain is essential. This paper proposes a YURAGI-Synthesis for brain imaging under the skull. In it, we employ 1.0MHz and 0.5MHz ultrasonic waves. We consider the weighted sum of these waves and attempt to extract the skull depth and image the sulcus under it. We add 1.0MHz and 0.5MHz, and we add the waves of 1.0MHz and Gaussian noise as the YURAGI- Synthesis. As the results, we successfully calculated skull thickness and extracted the sulcus width within the error of 5.86mm and depth within the error of 1.94mm. As for imaging the sulcus under the skull, the highest effectiveness of the synthesized wave is 96.30% when the weight of 0.5MHz waves is 0.60, and the one of YURAGI-Analysis wave is 97.15% when the weight is 0.003. Thus, YURAGI-Synthesis is useful to this study.
  • 八木 直美, 大城 宜哲, 石川 治, 畑 豊, 柴沼 均
    日本知能情報ファジィ学会 ファジィ システム シンポジウム 講演論文集 27 317-317 2011年  
    太ももの骨である正常な股関節では、大腿骨と受け皿の骨である寛骨臼の間にあり、股関節の屈伸運動の他に大腿骨の回旋運動と呼ばれる足をひねる運動もできる。炎症・変性・破壊によって傷んだ股関節を人工股関節を用いて修復するために、股関節の疾患に対する外科的治療法として人工股関節置換手術(Total Hip Arthroplasty:略称THA)がある。大腿骨の中央には髄腔と呼ばれる空洞があり、人工股関節全置換術では、この髄腔を利用して人工関節(ステム)を設置する。ステムには数種類のサイズがあり、実際の手術中に小さいステムから順番に挿入しながら最適なステムを医師の経験により決定されることがほとんどである。そこで本研究では、ファジィ論理を用いて定量的にステム選定を行うシステムを提案する。超音波プローブをステム上部に設置し、トリガ信号によって得られた音響の減衰時間を用いて最適なステム選定を行った。実際の手術時に有効な判断指標となり得ることを示した。

講演・口頭発表等

 48

担当経験のある科目(授業)

 10

共同研究・競争的資金等の研究課題

 12

学術貢献活動

 8