CVClient

林 晃世

ハヤシ アキヨ  (Akiyo HAYASHI)

基本情報

所属
兵庫県立大学 大学院 生命理学研究科 助教
学位
修士(兵庫県立大学)
博士(理学)(兵庫県立大学)

研究者番号
20779350
ORCID ID
 https://orcid.org/0000-0003-1900-4282
J-GLOBAL ID
201801007980607227
researchmap会員ID
B000344139

研究キーワード

 5

論文

 10
  • Yasushi Shiomi, Akiyo Hayashi, Yuichiro Saito, Masato T Kanemaki, Hideo Nishitani
    Genes to cells : devoted to molecular & cellular mechanisms 30(2) e70006 2025年3月  
    Loading PCNA onto chromatin is a pivotal step in DNA replication, cell cycle progression, and genome integrity. Conversely, unloading PCNA from chromatin is equally crucial for maintaining genome stability. Cells deficient in the PCNA unloader ATAD5-RFC exhibit elevated levels of chromatin-bound PCNA during S phase, but still show dissociation of PCNA from chromatin in mitosis. In this study, we found that depletion of TRAIP, an E3 ubiquitin ligase, results in the retention of PCNA on chromatin during mitosis. Although TRAIP-depleted cells with chromatin-bound PCNA during mitosis progressed into the subsequent G1 phase, they displayed reduced levels of Cdt1, a key replication licensing factor, and impaired S phase entry. In addition, TRAIP-depleted cells exhibited delayed S phase progression. These results suggest that TRAIP functions independently of ATAD5-RFC in removing PCNA from chromatin. Furthermore, TRAIP appears to be essential for precise pre-replication complexes (pre-RCs) formation necessary for faithful initiation of DNA replication and S phase progression.
  • Mazian M, Suenaga N, Ishii T, Hayashi A, Shiomi Y, Nishitani H
    Journal of biochemistry 165(6) 505-516 2019年1月  査読有り
  • Akiyo Hayashi, Nickolaos Nikiforos Giakoumakis, Tatjana Heidebrecht, Takashi Ishii, Andreas Panagopoulos, Christophe Caillat, Michiyo Takahara, Richard G Hibbert, Naohiro Suenaga, Magda Stadnik-Spiewak, Tatsuro Takahashi, Yasushi Shiomi, Stavros Taraviras, Eleonore von Castelmur, Zoi Lygerou, Anastassis Perrakis, Hideo Nishitani
    Life Science Alliance 1(6) e201800238-e201800238 2018年12月  査読有り
  • Akiyo Hayashi, Nickolaos Nikiforos Giakoumakis, Tatjana Heidebrecht, Takashi Ishii, Andreas Panagopoulos, Christophe Caillat, Michiyo Takahara, Richard G Hibbert, Naohiro Suenaga, Magda Stadnik-Spiewak, Tatsuro Takahashi, Yasushi Shiomi, Stavros Taraviras, Eleonore von Castelmur, Zoi Lygerou, Anastassis Perrakis, Hideo Nishitani
    bioRxiv 2018年11月  
  • Kohei Nukina, Akiyo Hayashi, Yasushi Shiomi, Kaoru Sugasawa, Motoaki Ohtsubo, Hideo Nishitani
    Genes to Cells 23(3) 200-213 2018年3月1日  査読有り
    CRL4Cdt2 ubiquitin ligase plays an important role maintaining genome integrity during the cell cycle. A recent report suggested that Cdk1 negatively regulates CRL4Cdt2 activity through phosphorylation of its receptor, Cdt2, but the involvement of phosphorylation remains unclear. To address this, we mutated all CDK consensus phosphorylation sites located in the C-terminal half region of Cdt2 (Cdt2-18A) and examined the effect on substrate degradation. We show that both cyclinA/Cdk2 and cyclinB/Cdk1 phosphorylated Cdt2 in vitro and that phosphorylation was reduced by the 18A mutation both in vitro and in vivo. The 18A mutation increased the affinity of Cdt2 to PCNA, and a high amount of Cdt2-18A was colocalized with PCNA foci during S phase in comparison with Cdt2-WT. Poly-ubiquitination activity to Cdt1 was concomitantly enhanced in cells expressing Cdt2-18A. Other CRL4Cdt2 substrates, Set8 and thymine DNA glycosylase, begin to accumulate around late S phase to G2 phase, but the accumulation was prevented in Cdt2-18A cells. Furthermore, mitotic degradation of Cdt1 after UV irradiation was induced in these cells. Our results suggest that CDK-mediated phosphorylation of Cdt2 inactivates its ubiquitin ligase activity by reducing its affinity to PCNA, an important strategy for regulating the levels of key proteins in the cell cycle.

講演・口頭発表等

 24

担当経験のある科目(授業)

 3

所属学協会

 1

共同研究・競争的資金等の研究課題

 7