研究者業績

今高 寛晃

イマタカ ヒロアキ  (Hiroaki Imataka)

基本情報

所属
兵庫県立大学 工学研究科 教授
学位
農学博士(東京大学)

研究者番号
50201942
J-GLOBAL ID
201801002037126056
researchmap会員ID
B000310027

外部リンク

1.学歴
1979年 三重県立上野高等学校卒業
1979年 東京大学理科2類入学
1983年 東京大学農学部畜産獣医学科卒業
1985年 獣医師免許取得
1988年 東京大学大学院博士課程修了

2.職歴
1988年 東北大学理学部 ポスドク
1990年 京都大学ウイルス研究所ポスドク
1994年 McGill大学医学部 研究員
2002年 理化学研究所 研究員
2008年 兵庫県立大学大学院工学研究科 教授

論文

 90
  • Kodai Machida, Rin Tanaka, Seraya Miki, Shotaro Noseda, Mayumi Yuasa-Sunagawa, Hiroaki Imataka
    BioTechniques 76(4) 161-168 2024年4月  
    Programmed-1 ribosomal frameshifting (-1 PRF) is a translational mechanism adopted by some viruses, including SARS-CoV-2. To find a compound that can inhibit -1 PRF in SARS-CoV-2, we set up a high-throughput screening system using a HeLa cell extract-derived cell-free protein synthesis (CFPS) system. A total of 32,000 compounds were individually incubated with the CFPS system programmed with a -1 PRF-EGFP template. Several compounds were observed to decrease the -1 PRF-driven fluorescence, and one of them had some suppressive effect on -1 PRF of a SARS-CoV-2 genome sequence in transfected cells. Thus the CFPS system can be used as a tool for a high-throughput screening of chemicals.
  • Hayato Ito, Kodai Machida, Mayuka Hasumi, Morio Ueyama, Yoshitaka Nagai, Hiroaki Imataka, Hideki Taguchi
    Scientific reports 13(1) 22826-22826 2023年12月20日  
    Nucleotide repeat expansion of GGGGCC (G4C2) in the non-coding region of C9orf72 is the most common genetic cause underlying amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts harboring this repeat expansion undergo the translation of dipeptide repeats via a non-canonical process known as repeat-associated non-AUG (RAN) translation. In order to ascertain the essential components required for RAN translation, we successfully recapitulated G4C2-RAN translation using an in vitro reconstituted translation system comprising human factors, namely the human PURE system. Our findings conclusively demonstrate that the presence of fundamental translation factors is sufficient to mediate the elongation from the G4C2 repeat. Furthermore, the initiation mechanism proceeded in a 5' cap-dependent manner, independent of eIF2A or eIF2D. In contrast to cell lysate-mediated RAN translation, where longer G4C2 repeats enhanced translation, we discovered that the expansion of the G4C2 repeats inhibited translation elongation using the human PURE system. These results suggest that the repeat RNA itself functions as a repressor of RAN translation. Taken together, our utilization of a reconstituted RAN translation system employing minimal factors represents a distinctive and potent approach for elucidating the intricacies underlying RAN translation mechanism.
  • Akihiro Kimura, Takeshi Takagi, Thiprampai Thamamongood, Satoshi Sakamoto, Takumi Ito, Iwao Seki, Masahiro Okamoto, Hiroyuki Aono, Satoshi Serada, Tetsuji Naka, Hiroaki Imataka, Kensuke Miyake, Takuya Ueda, Miki Miyanokoshi, Keisuke Wakasugi, Noriko Iwamoto, Norio Ohmagari, Takahiro Iguchi, Takeshi Nitta, Hiroshi Takayanagi, Hiroyuki Yamashita, Hiroshi Kaneko, Haruka Tsuchiya, Keishi Fujio, Hiroshi Handa, Harumi Suzuki
    Annals of the rheumatic diseases 82(9) 1153-1161 2023年9月  
    OBJECTIVES: Recent studies demonstrate that extracellular-released aminoacyl-tRNA synthetases (aaRSs) play unique roles in immune responses and diseases. This study aimed to understand the role of extracellular aaRSs in the pathogenesis of rheumatoid arthritis (RA). METHODS: Primary macrophages and fibroblast-like synoviocytes were cultured with aaRSs. aaRS-induced cytokine production including IL-6 and TNF-α was detected by ELISA. Transcriptomic features of aaRS-stimulated macrophages were examined using RNA-sequencing. Serum and synovial fluid (SF) aaRS levels in patients with RA were assessed using ELISA. Peptidyl arginine deiminase (PAD) 4 release from macrophages stimulated with aaRSs was detected by ELISA. Citrullination of aaRSs by themselves was examined by immunoprecipitation and western blotting. Furthermore, aaRS inhibitory peptides were used for inhibition of arthritis in two mouse RA models, collagen-induced arthritis and collagen antibody-induced arthritis. RESULTS: All 20 aaRSs functioned as alarmin; they induced pro-inflammatory cytokines through the CD14-MD2-TLR4 axis. Stimulation of macrophages with aaRSs displayed persistent innate inflammatory responses. Serum and SF levels of many aaRSs increased in patients with RA compared with control subjects. Furthermore, aaRSs released PAD4 from living macrophages, leading to their citrullination. We demonstrate that aaRS inhibitory peptides suppress cytokine production and PAD4 release by aaRSs and alleviate arthritic symptoms in a mouse RA model. CONCLUSIONS: Our findings uncovered the significant role of aaRSs as a novel alarmin in RA pathogenesis, indicating that their blocking agents are potent antirheumatic drugs.
  • Yosuke Ito, Yuhei Chadani, Tatsuya Niwa, Ayako Yamakawa, Kodai Machida, Hiroaki Imataka, Hideki Taguchi
    Nature communications 13(1) 7451-7451 2022年12月2日  
    Robust translation elongation of any given amino acid sequence is required to shape proteomes. Nevertheless, nascent peptides occasionally destabilize ribosomes, since consecutive negatively charged residues in bacterial nascent chains can stochastically induce discontinuation of translation, in a phenomenon termed intrinsic ribosome destabilization (IRD). Here, using budding yeast and a human factor-based reconstituted translation system, we show that IRD also occurs in eukaryotic translation. Nascent chains enriched in aspartic acid (D) or glutamic acid (E) in their N-terminal regions alter canonical ribosome dynamics, stochastically aborting translation. Although eukaryotic ribosomes are more robust to ensure uninterrupted translation, we find many endogenous D/E-rich peptidyl-tRNAs in the N-terminal regions in cells lacking a peptidyl-tRNA hydrolase, indicating that the translation of the N-terminal D/E-rich sequences poses an inherent risk of failure. Indeed, a bioinformatics analysis reveals that the N-terminal regions of ORFs lack D/E enrichment, implying that the translation defect partly restricts the overall amino acid usage in proteomes.
  • Kodai Machida, Shoma Miyawaki, Kuru Kanzawa, Taiki Hakushi, Tomonori Nakai, Hiroaki Imataka
    ACS synthetic biology 10(11) 3158-3166 2021年11月19日  
    In vitro reconstitution of whole cellular events is one of the important goals in synthetic biology. Using a cell-free protein synthesis (CFPS) system reconstituted with human translation factors and chaperones, we reproduced the biogenesis of β-actin, synthesis, folding, and polymerization in a test tube. This system enabled us to define which step of the β-actin biogenesis was defective in genetic mutations related to diseases. Hence, the CFPS system reconstituted with human factors may be a useful tool for analyzing proteostasis in eukaryotes.
  • Chihiro Hirayama, Kodai Machida, Kentaro Noi, Tadayoshi Murakawa, Masaki Okumura, Teru Ogura, Hiroaki Imataka, Kenji Inaba
    iScience 24(4) 102296-102296 2021年4月  
  • Kodai Machida, Hiroaki Imataka
    2021年  
  • Risa Nobuta, Kodai Machida, Misaki Sato, Satoshi Hashimoto, Yasuhito Toriumi, Shizuka Nakajima, Daiki Suto, Hiroaki Imataka, Toshifumi Inada
    Nucleic acids research 48(18) 10441-10455 2020年10月9日  査読有り
    Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3' untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3' UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3' UTRs. The 3' UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3' UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3' UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3' UTRs of mRNAs may encode various products.
  • Akihiro Oguro, Tomoaki Shigeta, Kodai Machida, Tomoaki Suzuki, Takeo Iwamoto, Senya Matsufuji, Hiroaki Imataka
    The Journal of Biochemistry 168(2) 139-149 2020年8月1日  査読有り最終著者
    <title>Abstract</title> Antizyme (AZ) interacts with ornithine decarboxylase, which catalyzes the first step of polyamine biosynthesis and recruits it to the proteasome for degradation. Synthesizing the functional AZ protein requires transition of the reading frame at the termination codon. This programmed +1 ribosomal frameshifting is induced by polyamines, but the molecular mechanism is still unknown. In this study, we explored the mechanism of polyamine-dependent +1 frameshifting using a human cell-free translation system. Unexpectedly, spermidine induced +1 frameshifting in the mutants replacing the termination codon at the shift site with a sense codon. Truncation experiments showed that +1 frameshifting occurred promiscuously in various positions of the AZ sequence. The probability of this sequence-independent +1 frameshifting increased in proportion to the length of the open reading frame. Furthermore, the +1 frameshifting was induced in some sequences other than the AZ gene in a polyamine-dependent manner. These findings suggest that polyamines have the potential to shift the reading frame in the +1 direction in any sequence. Finally, we showed that the probability of the sequence-independent +1 frameshifting by polyamines is likely inversely correlated with translation efficiency. Based on these results, we propose a model of the molecular mechanism for AZ +1 frameshifting.
  • Taisho Abe, Riku Nagai, Shunta Shimazaki, Shunta Kondo, Satoshi Nishimura, Yuriko Sakaguchi, Tsutomu Suzuki, Hiroaki Imataka, Kozo Tomita, Nono Takeuchi-Tomita
    The Journal of Biochemistry 167(5) 451-462 2020年5月1日  査読有り
    <title>Abstract</title> We have recently developed an in vitro yeast reconstituted translation system, which is capable of synthesizing long polypeptides. Utilizing the system, we examined the role of eIF5A and its hypusine modification in translating polyproline sequence within long open reading frames. We found that polyproline motif inserted at the internal position of the protein arrests translation exclusively at low Mg2+ concentrations, and peptidylpolyproline-tRNA intrinsically destabilizes 80S ribosomes. We demonstrate that unmodified eIF5A essentially resolves such ribosome stalling; however, the hypusine modification drastically stimulates ability of eIF5A to rescue polyproline-mediated ribosome stalling and is particularly important for the efficient translation of the N-terminal or long internal polyproline motifs.
  • Taisho Abe, Riku Nagai, Hiroaki Imataka, Nono Takeuchi-Tomita
    The Journal of Biochemistry 167(5) 441-450 2020年5月1日  査読有り
    <title>Abstract</title> We developed an in vitro translation system from yeast, reconstituted with purified translation elongation and termination factors and programmed by CrPV IGR IRES-containing mRNA, which functions in the absence of initiation factors. The system is capable of synthesizing the active reporter protein, nanoLuciferase, with a molecular weight of 19 kDa. The protein synthesis by the system is appropriately regulated by controlling its composition, including translation factors, amino acids and antibiotics. We found that a high eEF1A concentration relative to the ribosome concentration is critically required for efficient IRES-mediated translation initiation, to ensure its dominance over IRES-independent random internal translation initiation.
  • Takeshi Yokoyama, Kodai Machida, Wakana Iwasaki, Tomoaki Shigeta, Madoka Nishimoto, Mari Takahashi, Ayako Sakamoto, Mayumi Yonemochi, Yoshie Harada, Hideki Shigematsu, Mikako Shirouzu, Hisashi Tadakuma, Hiroaki Imataka, Takuhiro Ito
    Mol.Cell 74(6) 1205-1214 2019年6月  査読有り
  • Shintaro Iwasaki, Wakana Iwasaki, Mari Takahashi, Ayako Sakamoto, Chiduru Watanabe, Yuichi Shichino, Stephen N Floor, Koichi Fujiwara, Mari Mito, Kosuke Dodo, Mikiko Sodeoka, Hiroaki Imataka, Teruki Honma, Kaori Fukuzawa, Takuhiro Ito, Nicholas T Ingolia
    Molecular cell 73(4) 738-748 2019年2月21日  査読有り
    A class of translation inhibitors, exemplified by the natural product rocaglamide A (RocA), isolated from Aglaia genus plants, exhibits antitumor activity by clamping eukaryotic translation initiation factor 4A (eIF4A) onto polypurine sequences in mRNAs. This unusual inhibitory mechanism raises the question of how the drug imposes sequence selectivity onto a general translation factor. Here, we determined the crystal structure of the human eIF4A1⋅ATP analog⋅RocA⋅polypurine RNA complex. RocA targets the "bi-molecular cavity" formed characteristically by eIF4A1 and a sharply bent pair of consecutive purines in the RNA. Natural amino acid substitutions found in Aglaia eIF4As changed the cavity shape, leading to RocA resistance. This study provides an example of an RNA-sequence-selective interfacial inhibitor fitting into the space shaped cooperatively by protein and RNA with specific sequences.
  • Nogimori T, Nishiura K, Kawashima S, Nagai T, Oishi Y, Hosoda N, Imataka H, Kitamura Y, Kitade Y, Hoshino SI
    Nucleic acids research 47(1) 432-449 2019年1月  査読有り
  • Eri Uemura, Tatsuya Niwa, Shintaro Minami, Kazuhiro Takemoto, Satoshi Fukuchi, Kodai Machida, Hiroaki Imataka, Takuya Ueda, Motonori Ota, Hideki Taguchi
    Scientific Reports 8(1) 678 2018年12月1日  査読有り
    A subset of the proteome is prone to aggregate formation, which is prevented by chaperones in the cell. To investigate whether the basic principle underlying the aggregation process is common in prokaryotes and eukaryotes, we conducted a large-scale aggregation analysis of ~500 cytosolic budding yeast proteins using a chaperone-free reconstituted translation system, and compared the obtained data with that of ~3,000 Escherichia coli proteins reported previously. Although the physicochemical properties affecting the aggregation propensity were generally similar in yeast and E. coli proteins, the susceptibility of aggregation in yeast proteins were positively correlated with the presence of intrinsically disordered regions (IDRs). Notably, the aggregation propensity was not significantly changed by a removal of IDRs in model IDR-containing proteins, suggesting that the properties of ordered regions in these proteins are the dominant factors for aggregate formation. We also found that the proteins with longer IDRs were disfavored by E. coli chaperonin GroEL/ES, whereas both bacterial and yeast Hsp70/40 chaperones have a strong aggregation-prevention effect even for proteins possessing IDRs. These results imply that a key determinant to discriminate the eukaryotic proteomes from the prokaryotic proteomes in terms of protein folding would be the attachment of IDRs.
  • Machida K, Shigeta T, Yamamoto Y, Ito T, Svitkin Y, Sonenberg N, Imataka H
    Scientific reports 8(1) 17435-17435 2018年11月  査読有り
  • Kodai Machida, Kuru Kanzawa, Tomoaki Shigeta, Yuki Yamamoto, Kanta Tsumoto, Hiroaki Imataka
    ACS Synthetic Biology 7(2) 377-383 2018年2月16日  査読有り
    One of the aims of synthetic biology is bottom-up construction of reconstituted human cells for medical uses. To that end, we generated giant unilamellar vesicles (GUVs) that contained a HeLa cell extract, which comprises a cell-free protein synthesis (CFPS) system. Then we expressed Huntingtin protein fragments that contained polyglutamine (polyQ) sequences (Htt-polyQ), a hallmark of Huntington's disease. That system produced polyQ-dependent protein aggregates, as previously demonstrated in living cells. We next simplified the system by generating GUVs that contained purified human factors, which reconstituted a CFPS system. Htt-polyQ fragments expressed in these GUVs also formed protein aggregates. Moreover, an N-terminal deletion mutant, which had failed to form protein aggregates in living cells, also failed to form protein aggregates in the reconstituted GUVs. Thus, the GUV systems that encapsulated a human CFPS system could serve as reconstituted cells for studying neurological diseases.
  • Daiko Y, Segawa K, Machida K, Imataka H, Honda S, Iwamoto Y
    Adv. Engneering Mater 20 1800198 2018年  査読有り
  • Yusuke Daiko, Satoshi Mizutani, Kodai Machida, Hiroaki Imataka, Sawao Honda, Yuji Iwamoto
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 83(2) 252-258 2017年8月  査読有り
    A high proton-conducting P2O5-SiO2 nanoporous glass rod was prepared via sol-gel technique, and its tip was sharpened by a meniscus-etching method. The glass rod shows proton conductivity of 1 x 10(-3) at room temperature after absorption of water molecules. A palm-sized proton gun was prepared by utilizing the glass rod as a H+ emitter. A high voltage (similar to 2.5 kV) was applied between the tip of glass rod and an extraction electrode, and a high ionic current was successfully observed even under non-vacuum atmosphere at room temperature. Protonation reaction for polyaniline was confirmed from the structural changes of C=N in quinone to protonated C-N+. New applications of proton implantation will be expected especially in bioscience and medical technology. [GRAPHICS]
  • Kodai Machida, Tomoaki Shigeta, Ayano Kobayashi, Ai Masumoto, Yuna Hidaka, Hiroaki Imataka
    JOURNAL OF BIOTECHNOLOGY 239 1-8 2016年12月  査読有り
    Protein misfolding and aggregation is one of the major causes of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. So far protein aggregation related to these diseases has been studied using animals, cultured cells or purified proteins. In this study, we show that a newly synthesized polyglutamine protein implicated in Huntington's disease forms large aggregates in HeLa cells, and successfully recapitulate the process of this aggregation using a translation-based system derived from HeLa cell extracts. When the cell-free translation system was pre-incubated with recombinant human cytosolic chaperonin CCT, or the Hsc70 chaperone system (Hsc70s: Hsc70, Hsp40, and Hsp110), aggregate formation was inhibited in a dose-dependent manner. In contrast, when these chaperone proteins were added in a post-translational manner, aggregation was not prevented. These data led us to suggest that chaperonin CCT and Hsc70s interact with nascent polyglutamine proteins co-translationally or immediately after their synthesis in a fashion that prevents intra-and intermolecular interactions of aggregation-prone polyglutamine proteins. We conclude that the in vitro approach described here can be usefully employed to analyze the mechanisms that provoke polyglutamine-driven protein aggregation and to screen for molecules to prevent it. (C) 2016 Elsevier B.V. All rights reserved.
  • Kazuhiro Kashiwagi, Tomoaki Shigeta, Hiroaki Imataka, Takuhiro Ito, Shigeyuki Yokoyama
    Journal of Structural and Functional Genomics 17(1) 33-38 2016年3月1日  査読有り
    Tight control of protein synthesis is necessary for cells to respond and adapt to environmental changes rapidly. Eukaryotic translation initiation factor (eIF) 2B, the guanine nucleotide exchange factor for eIF2, is a key target of translation control at the initiation step. The nucleotide exchange activity of eIF2B is inhibited by the stress-induced phosphorylation of eIF2. As a result, the level of active GTP-bound eIF2 is lowered, and protein synthesis is attenuated. eIF2B is a large multi-subunit complex composed of five different subunits, and all five of the subunits are the gene products responsible for the neurodegenerative disease, leukoencephalopathy with vanishing white matter. However, the overall structure of eIF2B has remained unresolved, due to the difficulty in preparing a sufficient amount of the eIF2B complex. To overcome this problem, we established the recombinant expression and purification method for eIF2B from the fission yeast Schizosaccharomyces pombe. All five of the eIF2B subunits were co-expressed and reconstructed into the complex in Escherichia coli cells. The complex was successfully purified with a high yield. This recombinant eIF2B complex contains each subunit in an equimolar ratio, and the size exclusion chromatography analysis suggests it forms a heterodecamer, consistent with recent reports. This eIF2B increased protein synthesis in the reconstituted in vitro human translation system. In addition, disease-linked mutations led to subunit dissociation. Furthermore, we crystallized this functional recombinant eIF2B, and the crystals diffracted to 3.0 Å resolution.
  • Aysun Oezdemir, Kodai Machida, Hiroaki Imataka, Andrew D. Catling
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 469(1) 126-131 2016年1月  査読有り
    Cytoplasmic dynein is a macromolecular motor complex with diverse function's in eukaryotic cells. Dynein plays essential roles in intracellular transport of organelles and mitosis, mediated in part by interactions between the dynein intermediate chain 2 (IC-2) subunits and adapter proteins that bind specific cargos. In experiments to identify phosphorylation-dependent binding partners for IC-2 we instead identified a phosphorylation-independent binding partner, the cytosolic chaperonin containing T complex protein 1 (CCT). CCT consists of eight subunits (CCT1-8) and facilitates folding of a subset of newly synthesized proteins. We confirmed interactions between IC-2 and CCT5 and CCT8 in co-immunoprecipitation experiments and determined that the C-terminal half of IC-2 is necessary and sufficient to bind CCT8. Interestingly, co-immunoiprecipitation of IC-2 and CCT is abolished by prior cycloheximide treatment of cells, suggesting that CCT participates in folding of nascent IC-2. In vitro translation experiments employing recombinant CCT complex demonstrated that CCT is able to bind newly synthesized IC-2 after release from the ribosome consistent with a role in folding of IC-2. (C) 2015 Elsevier Inc. All rights reserved.
  • Kodai Machida, Hiroaki Imataka
    BIOTECHNOLOGY LETTERS 37(4) 753-760 2015年4月  査読有り
    Viral particles and virus-like particles (VLPs) or capsids are becoming important vehicles and templates in bio-imaging, drug delivery and materials sciences. Viral particles are prepared by infecting the host organism but VLPs are obtained from cells that express a capsid protein. Some VLPs are disassembled and then re-assembled to incorporate a material of interest. Cell-free systems, which are amenable to manipulating the viral assembly process, are also available for producing viral particles. Regardless of the production system employed, the particles are functionalized by genetic and/or chemical engineering. Here, we review various methods for producing and functionalizing viral particles and VLPs, and we discuss the merits of each system.
  • Kodai Machida, Satoshi Mikami, Mamiko Masutani, Kurumi Mishima, Tominari Kobayashi, Hiroaki Imataka
    JOURNAL OF BIOLOGICAL CHEMISTRY 289(46) 31960-31971 2014年11月  査読有り
    Background: The mechanism by which the encephalomyocarditis virus protein 2A-2B is processed into 2A and 2B is unknown. Results: A translation system reconstituted with defined human factors recapitulates 2A-2B processing. Conclusion: 2A-2B processing occurs at the elongation step. Significance: The translation system reconstituted with human factors should be a useful tool for studying eukaryotic protein synthesis mechanisms. The genomic RNA of encephalomyocarditis virus (EMCV) encodes a single polyprotein, and the primary scission of the polyprotein occurs between nonstructural proteins 2A and 2B by an unknown mechanism. To gain insight into the mechanism of 2A-2B processing, we first translated the 2A-2B region in vitro with eukaryotic and prokaryotic translation systems. The 2A-2B processing occurred only in the eukaryotic systems, not in the prokaryotic systems, and the unprocessed 2A-2B protein synthesized by a prokaryotic system remained uncleaved when incubated with a eukaryotic cell extract. These results suggest that 2A-2B processing is a eukaryote-specific, co-translational event. To define the translation factors required for 2A-2B processing, we constituted a protein synthesis system with eukaryotic elongation factors 1 and 2, eukaryotic release factors 1 and 3 (eRF1 and eRF3), aminoacyl-tRNA synthetases, tRNAs, ribosome subunits, and a plasmid template that included the hepatitis C virus internal ribosome entry site. We successfully reproduced 2A-2B processing in the reconstituted system even without eRFs. Our results indicate that this unusual event occurs in the elongation phase of translation.
  • Akira Fukao, Yuichiro Mishima, Naoki Takizawa, Shigenori Oka, Hiroaki Imataka, Jerry Pelletier, Nahum Sonenberg, Christian Thoma, Toshinobu Fujiwara
    MOLECULAR CELL 56(1) 79-89 2014年10月  査読有り
    In animals, key functions of microRNA-induced silencing complex (miRISC) are translational repression and deadenylation followed by mRNA decay. While miRISC represses translation initiation, it is poorly understood how miRISC exerts this function. Here we assessed the effect of miRISC on synergistic recruitment of translation initiation factors to target mRNAs by using direct biochemical assays. We show that miRISC promotes eIF4AI and eIF4AII release from target mRNAs prior to dissociation of eIF4E and eIF4G in a deadenylation-independent manner. Strikingly, miRISC-induced release of eIF4AI and eIF4AII from target mRNAs and miRISC-induced inhibition of cap-dependent translation can both be counteracted by the RNA-binding protein HuD via a direct interaction of HuD with eIF4A. Furthermore, the pharmacological eIF4A inhibitor silvestrol, which locks eIF4A on mRNAs, conferred resistance to miRNA-mediated translational repression. In summary, we propose that both eIF4AI and eIF4AII are functionally important targets in miRISC-mediated translation control.
  • Tominari Kobayashi, Kodai Machida, Hiroaki Imataka
    Methods in Molecular Biology 1118 149-156 2014年  査読有り
    Cell-free synthesis of an infectious virus is an ideal tool for elucidating the mechanism of viral replication and for development of antiviral drugs. In this chapter, the synthesis of Encephalomyocarditis virus (EMCV) from RNA and DNA in a HeLa cell extract-derived in vitro protein expression system is described. When a synthetic EMCV RNA with a hammerhead ribozyme sequence at its 5′-end is incubated with a HeLa cell extract using a dialysis system, EMCV particles are progressively synthesized. For EMCV synthesis from DNA, a plasmid harboring the full-length cDNA of EMCV with the T7 promoter/terminator unit is incubated in the HeLa cell extract supplemented with T7 RNA polymerase. © 2014 Springer Science+Business Media, LLC.
  • Tominari Kobayashi, Jun Yukigai, Kosaku Ueda, Kodai Machida, Mamiko Masutani, Yuri Nishino, Atsuo Miyazawa, Hiroaki Imataka
    BIOTECHNOLOGY LETTERS 35(3) 309-314 2013年3月  査読有り
    Virus particles are promising vehicles and templates for vaccination, drug delivery and material sciences. Although infectious picornaviruses can be synthesized from genomic or synthetic RNA by cell-free protein expression systems derived from mammalian cell extract, there has been no direct evidence that authentic viral particles are indeed synthesized in the absence of living cells. We purified encephalomyocarditis virus (EMCV) synthesized by a HeLa cell extract-derived, cell-free protein expression system, and visualized the viral particles by transmission electron-microscopy. The in vitro-synthesized EMCV particles were indistinguishable from the in vivo-synthesized particles. Our results validate the use of the cell-free technique for the synthesis of EMCV particles.
  • Mamiko Masutani, Kodai Machida, Tominari Kobayashi, Shigeyuki Yokoyama, Hiroaki Imataka
    PROTEIN EXPRESSION AND PURIFICATION 87(1) 5-10 2013年1月  査読有り
    Many biologically important factors are composed of multiple subunits. To study the structure and function of the protein complexes and the role of each subunit, a rapid and efficient method to prepare recombinant protein complexes is needed. In this work, we established an in vitro reconstitution system of eukaryotic translation initiation factor (eIF) 3, a protein complex consisting of 11 distinct subunits. A HeLa cell-derived in vitro coupled transcription/translation system was programmed with multiple plasmids encoding the 11 eIF3 subunits in total. After incubation for several hours, the eIF3 complex was purified through tag-dependent affinity chromatography. When eIF3l, one of the nonessential subunits of eIF3, was not expressed, the eIF3 complex that was devoid of eIF3l was still obtained. Both the 11 subunits complex and the eIF3l-less complex were as active as native eIF3 as observed by a reconstituted translation initiation assay system. In conclusion, the cell-free co-expression system should be a feasible and rapid system to reconstitute protein complexes. (C) 2012 Elsevier Inc. All rights reserved.
  • Hiroaki Imataka
    JOURNAL OF BIOCHEMISTRY 152(4) 293-295 2012年10月  査読有り
    Single-molecule imaging is a powerful technique to visualize molecular interactions and movements. Translation is one of the most interesting targets for researchers with the molecular-imaging skills, since mRNA, tRNA and translation factors interact with or move inside or on the ribosome in an ordered manner. Trans-translation is a bacterial quality control system to rescue the ribosomes stalled at the 3' end of the mRNA, and this phenomenon is recapitulated in vitro with defined factors including two trans-translation-specific entities tmRNA and SmpB. Zhou et al. (Single molecule imaging of the trans-translation entry process via anchoring of the tagged ribosome. J Biochem 2011;149:609-618.) successfully visualized the interaction of the tmRNA-SmpB complex with the ribosome by immobilizing the ribosome on the quartz surface with the HaloTag technology. This ribosome-anchoring system may be useful for the imaging analysis of other processes of translation.
  • Akiko Yanagiya, Eigo Suyama, Hironori Adachi, Yuri V. Svitkin, Pedro Aza-Blanc, Hiroaki Imataka, Satoshi Mikami, Yvan Martineau, Ze'ev A. Ronai, Nahum Sonenberg
    MOLECULAR CELL 46(6) 847-858 2012年6月  査読有り
    Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. elF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. elF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of elF4E for translation, a drastic knockdown of elF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in elF4E-knock-down cells. Hypophosphorylated 4E-BP1, which binds to elF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of elF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.
  • Toshinobu Fujiwara, Akira Fukao, Yumi Sasano, Hidenori Matsuzaki, Ushio Kikkawa, Hiroaki Imataka, Kunio Inoue, Shogo Endo, Nahum Sonenberg, Christian Thoma, Hiroshi Sakamoto
    NUCLEIC ACIDS RESEARCH 40(5) 1944-1953 2012年3月  査読有り
    The RNA binding protein HuD plays essential roles in neuronal development and plasticity. We have previously shown that HuD stimulates translation. Key for this enhancer function is the linker region and the poly(A) binding domain of HuD that are also critical for its function in neurite outgrowth. Here, we further explored the underlying molecular interactions and found that HuD but not the ubiquitously expressed HuR interacts directly with active Akt1. We identify that the linker region of HuD is required for this interaction. We also show by using chimeric mutants of HuD and HuR, which contain the reciprocal linker between RNA-binding domain 2 (RBD2) and RBD3, respectively, and by overexpressing a dominant negative mutant of Akt1 that the HuD-Akt1 interaction is functionally important, as it is required for the induction of neurite outgrowth in PC12 cells. These results suggest the model whereby RNA-bound HuD functions as an adapter to recruit Akt1 to trigger neurite outgrowth. These data might also help to explain how HuD enhances translation of mRNAs that encode proteins involved in neuronal development.
  • Kodai Machida, Mamiko Masutani, Tominari Kobayashi, Satoshi Mikami, Yuri Nishino, Atsuo Miyazawa, Hiroaki Imataka
    PROTEIN EXPRESSION AND PURIFICATION 82(1) 61-69 2012年3月  査読有り
    The eukaryotic cytosolic chaperonin CCT (chaperonin-containing TCP-1) assists folding of newly synthesized polypeptides. The fully functional CCT is built from two identical rings, each composed of single copies of eight distinct subunits. To study the structure and function of the CCT complex and the role of each subunit, a rapid and efficient method for preparing a recombinant CCT complex is needed. In this work, we established an efficient expression and purification method to obtain human recombinant CCT. BHK-21 cells were infected with a vaccinia virus expressing T7 RNA polymerase and transfected with eight plasmids, each encoding any one of the eight CCT subunits in the T7 RNA polymerase promoter/terminator unit. The CCT1 subunit was engineered to carry a hexa-histidine tag or FLAG tag in the internal loop region. Three clays later, cells were harvested for purification of the CCT complex through tag-dependent affinity chromatography and gel filtration. The purified recombinant CCT complexes were indistinguishable from the endogenous CCT purified from HeLa cells in terms of morphology and function. In conclusion, the co-expression system established in this study should be a simple and powerful tool for reconstitution of a large multi-subunit complex. (C) 2011 Elsevier Inc. All rights reserved.
  • Tominari Kobayashi, Satoshi Mikamia, Shigeyuki Yokoyamaa, Hiroaki Imataka
    Journal of Virological Methods 179(1) e1 2012年1月  査読有り
  • Tominari Kobayashi, Yusuke Nakamura, Satoshi Mikami, Mamiko Masutani, Kodai Machida, Hiroaki Imataka
    BIOTECHNOLOGY LETTERS 34(1) 67-73 2012年1月  査読有り
    Virus particles are used in vaccination, drug delivery, and material sciences. Here we devised a system where the RNA virus encephalomyocarditis virus (EMCV) is synthesized from DNA templates in vitro. When a plasmid or a PCR product harboring the full-length cDNA of EMCV in the T7 promoter/terminator unit was incubated in a HeLa cell extract supplemented with T7 RNA polymerase, EMCV was produced within 4 h at an efficiency of over 10-fold compared with the system programmed with the EMCV RNA. The EMCV RNA transcribed by the virally encoded RNA-dependent RNA polymerase was predominantly incorporated into the EMCV particle even in the presence of a larger amount of the EMCV RNA transcribed by T7 RNA polymerase from the plasmid.
  • Tominari Kobayashi, Kodai Machida, Satoshi Mikami, Mamiko Masutani, Hiroaki Imataka
    JOURNAL OF BIOCHEMISTRY 150(4) 423-430 2011年10月  査読有り
    To study the relationship between translation and replication of encephalomyocarditisvirus (EMCV) RNA, we established a cell-free RNA replication system by employing a human cell extracts-based in vitro translation system. In this system, a cis-EMCV RNA replicon encoding the Renilla luciferase (R-luc) or GFP and the viral regulatory proteins efficiently replicated with simultaneous translation of the encoded protein. To examine how translation of the replicon RNA, but not the translated products, affected replication, a trans-EMCV RNA replicon encoding R-luc and the RNA replication elements was next constructed. The trans-replicon RNA replicated only in the presence of the regulatory proteins pre-expressed in trans. Incubation with cycloheximide, puromycin or a dominant-negative eukaryotic translation initiation factor 4A following expression of the regulatory proteins almost completely inhibited not only translation of the trans-replicon RNA but also replication of the RNA, suggesting that EMCV RNA translation promotes replication of the RNA. In conclusion, the cell-free RNA replication systems should become useful tools for the study of the viral RNA replication.
  • Satoshi Mikami, Tominari Kobayashi, Kodai Machida, Mamiko Masutani, Shigeyuki Yokoyama, Hiroaki Imataka
    BIOTECHNOLOGY LETTERS 32(7) 897-902 2010年7月  査読有り
    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.
  • Mikami S, Kobayashi T, Imataka H
    Methods in molecular biology (Clifton, N.J.) 607 43-52 2010年  査読有り
  • Akira Fukao, Yumi Sasano, Hiroaki Imataka, Kunio Inoue, Hiroshi Sakamoto, Nahum Sonenberg, Christian Thoma, Toshinobu Fujiwara
    MOLECULAR CELL 36(6) 1007-1017 2009年12月  査読有り
    The RNA-binding protein HuD promotes neuronal differentiation by an unknown mechanism. Here we identify an enhancer function of HuD in translation. Translation stimulation by HuD requires both a 3&apos; poly(A) tail and a 5&apos; m(7)G cap structure. We also show that HuD directly interacts with eIF4A. This interaction and the poly(A)-binding activity of HuD are critical for its translational enhancer function because HuD-eIF4A- and HuD-poly(A)-binding mutants fail to stimulate translation. We show that translation of HCV IRES mRNA, which is eIF4A independent, is not stimulated by HuD. We also find that the eIF4A and poly(A)-binding activities of HuD are not only important for stimulating translation but also are essential for HuD-induced neurite outgrowth in PC12 cells. This example of cap-dependent translational regulation might explain at least in part how HuD triggers the induction of neuronal differentiation.
  • Imataka H, Mikami S
    Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 54(16 Suppl) 2213-2218 2009年12月  査読有り
  • Takuya B. Hiyama, Takuhiro Ito, Hiroaki Imataka, Shigeyuki Yokoyama
    JOURNAL OF MOLECULAR BIOLOGY 392(4) 937-951 2009年10月  査読有り
    Eukaryotic translation initiation factor 2B (eIF2B) is the heteropentameric guanine-nucleotide exchange factor specific for eukaryotic initiation factor 2 (6172). Under stressed conditions, guanine-nucleotide exchange is strongly inhibited by the tight binding of phosphorylated eIF2 to eIF2B. Here, we report the crystal structure of the alpha subunit of human eIF2B at 2.65 angstrom resolution. The eIF2B alpha structure consists of the N-terminal alpha-helical domain and the C-terminal Rossmann-fold-like domain. A positively charged pocket, whose entrance is about 15-17 angstrom in diameter, resides at the boundary between the two domains. A sulfate ion is located at the bottom of the pocket (about 16 angstrom in depth). The residues comprising the sulfate-ion-binding site are strictly conserved in eIF2B alpha. Since this deep, wide pocket with the sulfate-ion-binding site is not conserved in distant homologues, including 5-methylthioribose 1-phosphate isomerases, these characteristics may be distinctive of eIF2B alpha. Interestingly, the yeast eIF2B alpha missense mutations that reduce the eIF2B sensitivity to phosphorylated eIF2 are mapped on the other side of the pocket. One of the three human eIFB2B alpha missense mutations that induce the lethal brain disorder vanishing white matter or childhood ataxia with central nervous system hypomyelination is mapped inside the pocket. The beta and delta subunits of eIF2B are homologous to eIF2B alpha and may have tertiary structures similar to the present eIF2B alpha structure. The sulfate-ion-binding residues of eIF2B alpha are well conserved in eIF2B beta/delta. The abovementioned yeast and human missense mutations of eIF2B beta/delta were also mapped on the eIF2B alpha structure, which revealed that the human mutations are clustered on the same side as the pocket, while the yeast mutations reside on the opposite side. As most of the mutated residues are exposed on the surface of the eIF2B subunit structure, these exposed residues are likely to be involved in either the subunit interactions or the interaction with eIF2. (C) 2009 Elsevier Ltd. All rights reserved.
  • Yuki Fujita, Masako Oe, Tatsuya Tutsumino, Shigenobu Morino, Hiroaki Imataka, Koji Tomoo, Toshimasa Ishida
    JOURNAL OF BIOCHEMISTRY 146(3) 359-368 2009年9月  査読有り
    The interactions of recombinant human eIF4A (4A) and its N- and C-terminal side domains (AN and AC, respectively) with the middle- and C-terminal-domain-linked fragment (GMC) of eIF4G and its middle and C-terminal domains (GM and GC, respectively) were investigated by surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC). It is remarkable that the kinetic parameter-dependent SPR profile observed for the 4A-GMC pair was quite different from the steady affinity profiles of the 4A-GM/GC pairs, suggesting the simultaneous contribution of the middle and C-terminal domains of eIF4G for the binding with eIF4A. On the other hand, ITC yielded the enthalpy energies of -1.5 x 10(4) to -2.5 x 10(4) J/mol for the domain-domain interactions of 4A with GMC. Although the ITC profile of the 4A-GM pair reflects well the structural feature shown previously by NAIR and X-ray analyses, it was essentially different from that of the 4A-GMC pair. The present results suggest that the intimate interaction between the eIF4A N- and C-terminal domains and the eIF4G middle and C-terminal domains is necessary to reveal the biologically active function of the eIF4A-eIF4G complex.
  • Akiko Yanagiya, Yuri V. Svitkin, Shoichiro Shibata, Satoshi Mikami, Hiroaki Imataka, Nahum Sonenberg
    MOLECULAR AND CELLULAR BIOLOGY 29(6) 1661-1669 2009年3月  査読有り
    Eukaryotic mRNAs possess a 5&apos;-terminal cap structure (cap), m(7)GpppN, which facilitates ribosome binding. The cap is bound by eukaryotic translation initiation factor 4F (eIF4F), which is composed of eIF4E, eIF4G, and eIF4A. eIF4E is the cap-binding subunit, eIF4A is an RNA helicase, and eIF4G is a scaffolding protein that bridges between the mRNA and ribosome. eIF4G contains an RNA-binding domain, which was suggested to stimulate eIF4E interaction with the cap in mammals. In Saccharomyces cerevisiae, however, such an effect was not observed. Here, we used recombinant proteins to reconstitute the cap binding of the mammalian eIF4E-eIF4GI complex to investigate the importance of the RNA-binding region of eIF4GI for cap interaction with eIF4E. We demonstrate that chemical cross-linking of eIF4E to the cap structure is dramatically enhanced by eIF4GI fragments possessing RNA-binding activity. Furthermore, the fusion of RNA recognition motif 1 (RRM1) of the La autoantigen to the N terminus of eIF4GI confers enhanced association between the cap structure and eIF4E. These results demonstrate that eIF4GI serves to anchor eIF4E to the mRNA and enhance its interaction with the cap structure.
  • Yuri V. Svitkin, Valentina M. Evdokimova, Ann Brasey, Tatyana V. Pestova, Daniel Fantus, Akiko Yanagiya, Hiroaki Imataka, Maxim A. Skabkin, Lev P. Ovchinnikov, William C. Merrick, Nahum Sonenberg
    EMBO JOURNAL 28(1) 58-68 2009年1月  査読有り
    The interaction between the poly(A)-binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA-binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB-1 has a pivotal function in the regulation of eIF4F activity by PABP. In cell extracts, the addition of YB-1 exacerbated the inhibition of 80S ribosome initiation complex formation by PABP depletion. Rabbit reticulocyte lysate in which PABP weakly stimulates translation is rendered PABP-dependent after the addition of YB-1. In this system, eIF4E binding to the cap structure is inhibited by YB-1 and stimulated by a nonspecific RNA. Significantly, adding PABP back to the depleted lysate stimulated eIF4E binding to the cap structure more potently if this binding had been downregulated by YB-1. Conversely, adding nonspecific RNA abrogated PABP stimulation of eIF4E binding. These data strongly suggest that competition between YB-1 and eIF4G for mRNA binding is required for efficient stimulation of eIF4F activity by PABP.
  • Hiroaki Imataka, Satoshi Mikami
    Seikagaku 81(4) 303-307 2009年  査読有り
  • Satoshi Mikami, Tominari Kobayashi, Mamiko Masutani, Shigeyuki Yokoyama, Hiroaki Imataka
    PROTEIN EXPRESSION AND PURIFICATION 62(2) 190-198 2008年12月  査読有り
    The aim of this study was to develop an efficient cell-free protein expression system derived from mammalian cells. We established a HeLa Cell-based in vitro coupled transcription/translation system with T7 RNA polymerase and a plasmid that harbored a T7 promoter/terminator unit. To enhance protein synthesis in the coupled system, we placed the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) or the hepatitis C virus (HCV) IRES between the T7 promoter and the coding region of the plasmid. Remarkably, we found that these IRES-dependent systems were able to produce large proteins including GCN2 (160 kD), Dicer (200 kD) and mTOR (260 kD) to levels detectable on SDS-PAGE by Comassie Brilliant Blue-staining. We purified the synthesized proteins to near homogeneity, and validated their functionalities in the appropriate biochemical assays. In conclusion, the HeLa cell-based in vitro coupled transcription/translation system using the EMCV or HCV IRES is a convenient tool, particularly for the production of large recombinant proteins. (c) 2008 Elsevier Inc. All rights reserved.
  • Yvan Martineau, Melanie C. Derry, Xiaoshan Wang, Akiko Yanagiya, Juan Jose Berlanga, Ann-Bin Shyu, Hiroaki Imataka, Kalle Gehring, Nahum Sonenberg
    MOLECULAR AND CELLULAR BIOLOGY 28(21) 6658-6667 2008年11月  査読有り
    Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.
  • Lisa Lindqvist, Hiroaki Imataka, Jerry Pelletier
    RNA-A PUBLICATION OF THE RNA SOCIETY 14(5) 960-969 2008年5月  査読有り
    Cap-dependent ribosome recruitment to eukaryotic mRNAs during translation initiation is stimulated by the eukaryotic initiation factor (eIF) 4F complex and eIF4B. eIF4F is a heterotrimeric complex composed of three subunits: eIF4E, a 7-methyl guanosine cap binding protein; eIF4A, a DEAD-box RNA helicase; and eIF4G. The interactions of eIF4E, eIF4A, and eIF4B with mRNA have previously been monitored by chemical-and UV-based cross-linking approaches aimed at characterizing the initial protein/mRNA interactions that lead to ribosome recruitment. These studies have led to a model whereby eIF4E interacts with the 7-methyl guanosine cap structure in an ATP-independent manner, followed by an ATP-dependent interaction of eIF4A and eIF4B. Herein, we apply a splint-ligation-mediated approach to generate 4-thiouridine-containing mRNA adjacent to a radiolabel group that we utilize to monitor cap-dependent cross-linking of proteins adjacent to, and downstream from, the cap structure. Using this approach, we demonstrate interactions between eIF4G, eIF4H, and eIF3 subunits with the mRNA during the cap recognition process.
  • Hironori Kawahara, Takao Imai, Hiroaki Imataka, Masafumi Tsujimoto, Ken Matsumoto, Hideyuki Okano
    JOURNAL OF CELL BIOLOGY 181(4) 639-653 2008年5月  査読有り
    Musashi1 (Msi1) is an RNA-binding protein that is highly expressed in neural stem cells. We previously reported that Msi1 contributes to the maintenance of the immature state and self-renewal activity of neural stem cells through translational repression of m-Numb. However, its translation repression mechanism has remained unclear. Here, we identify poly(A) binding protein (PABP) as an Msi1-binding protein, and find Msi1 competes with eIF4G for PABP binding. This competition inhibits translation initiation of Msi1's target mRNA. Indeed, deletion of the PABP-interacting domain in Msi1 abolishes its function. We demonstrate that Msi1 inhibits the assembly of the 80S, but not the 48S, ribosome complex. Consistent with these conclusions, Msi1 colocalizes with PABP and is recruited into stress granules, which contain the stalled preinitiation complex. However, Msi1 with mutations in two RNA recognition motifs fails to accumulate into stress granules. These results provide insight into the mechanism by which sequence-specific translational repression occurs in stem cells through the control of translation initiation.
  • Kazuhiro Nishimura, Al Sakuma, Tomoko Yamashita, Go Hirokawa, Hiroaki Imataka, Keiko Kashiwagi, Kazuei Igarashi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 364(1) 124-130 2007年12月  査読有り
    The mechanism of synthesis of ornithine decarboxylase (ODC) at the level of translation was studied using cell culture and cell-free systems. Synthesis of firefly luciferase (Flue) from the second open reading frame (ORF) in a bicistronic construct transfected into FM3A and HeLa cells was enhanced by the presence of the 5'-untranslated region (5'-UTR) of ODC mRNA between the two ORFs. However, cotransfection of the gene encoding 2A protease inhibited the synthesis of Flue. Synthesis of Flue from the second cistron in the bicistronic mRNA in a cell-free system was not affected significantly by the 5'-UTR of ODC mRNA. Synthesis of ODC from ODC mRNA in a cell-free system was inhibited by 2A protease and cap analogue (M(7)GpppG). Rapamycin inhibited ODC synthesis by 40-50% at both the G(1)/S boundary and the G(2)/M phase. These results indicate that an IRES in the 5'-UTR of ODC mRNA does not function effectively. (C) 2007 Elsevier Inc. All rights reserved.
  • Mamiko Masutani, Nahum Sonenberg, Shigeyuki Yokoyama, Hiroaki Imataka
    EMBO JOURNAL 26(14) 3373-3383 2007年7月  査読有り
    Eukaryotic translation initiation factor (eIF) 3 is the largest eIF (similar to 650 kDa), consisting of 10-13 different polypeptide subunits in mammalian cells. To understand the role of each subunit, we successfully reconstituted a human eIF3 complex consisting of 11 subunits that promoted the recruitment of the 40S ribosomal subunit to mRNA. Strikingly, the eIF3g and eIF3i subunits, which are evolutionarily conserved between human and the yeast Saccharomyces cerevisiae are dispensable for active mammalian eIF3 complex formation. Extensive deletion analyses suggest that three evolutionarily conserved subunits (eIF3a, eIF3b, and eIF3c) and three non-conserved subunits (eIF3e, eIF3f, and eIF3h) comprise the functional core of mammalian eIF3.

MISC

 7

講演・口頭発表等

 12

共同研究・競争的資金等の研究課題

 19