研究者業績

大島 裕明

オオシマ ヒロアキ  (Hiroaki Ohshima)

基本情報

所属
兵庫県立大学 大学院情報科学研究科 准教授
学位
博士(情報学)(京都大学)

研究者番号
90452317
J-GLOBAL ID
201401077923568388
researchmap会員ID
7000008756

論文

 142
  • 奥田 萌莉, 石澤 秀紘, 大島 裕明
    電子情報通信学会論文誌D J107-D(5) 323-334 2024年5月  査読有り
  • 三林 亮太, 山本 岳洋, 佃 洸摂, 渡邉 研斗, 中野 倫靖, 後藤 真孝, 大島 裕明
    情報処理学会論文誌:データベース 17(2) 28-39 2024年4月  査読有り
  • Kaisei Nishimoto, Kenro Aihara, Noriko Kando, Yoshiyuki Shoji, Yusuke Yamamoto, Takehiro Yamamoto, Hiroaki Ohshima
    Proceedings of the 12th International Conference on Information and Education Technology (ICIET 2024) 2024年3月  査読有り
  • Yuna Morita, Takehiro Yamamoto, Yoshiyuki Shoji, Hiroaki Ohshima, Yusuke Yamamoto, Noriko Kando, Kenro Aihara
    Proceedings of the 12th International Conference on Information and Education Technology (ICIET 2024) 2024年3月  査読有り
  • Yuya Tsuda, Takehiro Yamamoto, Hiroaki Ohshima
    Proceedings of the 2024 ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR 2024) 396-400 2024年3月  査読有り
  • Kilho Shin, Chris Liu, Katsuyuki Maeda, Hiroaki Ohshima
    Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) 3 1100-1107 2024年2月  査読有り
  • Huu-Long Pham, Ryota Mibayashi, Takehiro Yamamoto, Makoto P. Kato, Yusuke Yamamoto, Yoshiyuki Shoji, Hiroaki Ohshima
    Proceedings of the 2024 International Conference on Big Data and Smart Computing (BigComp 2024) 2024年2月  査読有り
  • Wakana Kuwata, Ryota Mibayashi, Masanori Tani, Hiroaki Ohshima
    Proceedings of the 2024 International Conference on Big Data and Smart Computing (BigComp 2024) 2024年2月  査読有り
  • Yu Morikawa, Kilho Shin, Masataka Kubouchi, Hiroaki Ohshima
    The Journal of Supercomputing 2024年2月  査読有り
  • Tomoya Hashiguchi, Ryota Mibayashi, Huu-Long Pham, Wakana Kuwata, Yuka Kawada, Yuya Tsuda, Takehiro Yamamoto, Hiroaki Ohshima
    Proceedings of the 17th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-17) 2023年12月  
  • Yuka Kawada, Takehiro Yamamoto, Hiroaki Ohshima, Yuki Yanagida, Makoto P. Kato, Sumio Fujita
    Proceedings of the 25th International Conference on Asia-Pacific Digital Libraries (ICADL 2023) 181-187 2023年12月  査読有り
  • Jinsong Yu, Shio Takidaira, Tsukasa Sawaura, Yoshiyuki Shoji, Takehiro Yamamoto, Yusuke Yamamoto, Hiroaki Ohshima, Kenro Aihara, Noriko Kando
    Proceedings of the 25th International Conference on Asia-Pacific Digital Libraries (ICADL 2023) 2 30-45 2023年12月  査読有り
  • Tomohiro Ishii, Yoshiyuki Shoji, Takehiro Yamamoto, Hiroaki Ohshima, Sumio Fujita, Martin J. Dürs
    Proceedings of the 25th International Conference on Information Integration and Web Intelligence (iiWAS 2023) 217-232 2023年12月  査読有り
  • 森川 優, 中西 波瑠, 稲村 直樹, 近藤 伸明, 小渕 浩希, 大澤 輝夫, 松原 崇, 申 吉浩, 大島 裕明, 上原 邦昭
    日本気象学会機関誌「天気」 70(12) 577-592 2023年12月  査読有り
  • Yuna Saka, Yoshiyuki Shoji, Hiroaki Ohshima, Kouzou Ohara
    Proceedings of the 25th International Conference on Information Integration and Web Intelligence (iiWAS 2023) 541-546 2023年11月  査読有り
  • Ryota Mibayashi, Takehiro Yamamoto, Kosetsu Tsukuda, Kento Watanabe, Tomoyasu Nakano, Masataka Goto, and Hiroaki Ohshima
    Proceedings of the;International;Symposium on Computer;Music Multidisciplinary Research (CMMR 2023) 30-41 2023年11月  査読有り
  • Yuki Yanagida, Makoto P. Kato, Yuka Kawada, Takehiro Yamamoto, Hiroaki Ohshima, Sumio Fujita
    Proceedings of the 15th ACM Web Science Conference 2023(WebSci 2023) 324-334 2023年4月  査読有り
  • 柳田 雄輝, 加藤 誠, 河田 友香, 山本 岳洋, 大島 裕明, 藤田 澄男
    日本データベース学会 データドリブンスタディーズ 1(6) 2023年3月  査読有り
  • 坂根 和光, 三林 亮太, 川原 敬史, 山本 岳洋, 澤田 祥一, 高階 勇人, 大島 裕明
    日本データベース学会 データドリブンスタディーズ 1(6) 2023年3月  査読有り
  • 奥田 萌莉, 大島 裕明
    情報処理学会論文誌:データベース 16(1) 14-25 2023年1月  査読有り
  • Wang Dan, Ryota Mibayashi, Hiroaki Ohshima
    Proceedings of the 12th International Congress on Advanced Applied Informatics (IIAI-AAI 2022) 158-163 2022年7月  査読有り
  • Ryota Mibayashi, Masaki Ueta, Takafumi Kawahara, Naoaki Matsumoto, Takuma Yoshimura, Kenro Aihara, Noriko Kando, Yoshiyuki Shoji, Yuta Nakajima, Takehiro Yamamoto, Yusuke Yamamoto, Hiroaki Ohshima
    Proceedings of the 12th International Congress on Advanced Applied Informatics (IIAI-AAI 2022) 13-18 2022年7月  査読有り
  • Makoto P. Kato, Hiroaki Ohshima, Ying-Hsang Liu, Hsin-Liang Chen, Yu Nakano
    Proceedings of the 16th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-16) 2022年6月  
  • Moeri Okuda, Ryota Mibayashi, Takafumi Kawahara, Naoaki Matsumoto, Kenji Tanaka, Takehiro Yamamoto, Hiroaki Ohshima
    Proceedings of the 16th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-16) 2022年6月  
  • Tomoya Hashiguchi, Takehiro Yamamoto, Sumio Fujita, Hiroaki Ohshima
    IEICE Transactions on Information and Systems E105-D(5) 928-935 2022年5月  査読有り
  • 川原 敬史, 橋口 友哉, 湯本 高行, 大島 裕明
    電子情報通信学会論文誌D 情報・システム J105-D(5) 322-336 2022年5月1日  査読有り
    本研究では,事故の概要を説明したテキストを入力として,当事者が受けた傷病の程度を推定する手法を提案する.入力の対象とするテキストは,数文程度の文書を想定している.機械学習による分類問題を解くことで,その入力に該当する傷病の程度を推定するというのが提案手法の構成となる.本研究で利用するデータは,事故情報データバンクシステムで公開されている事故データである.入力として用いるのは「事故の概要」項目に記載されたテキストである.提案手法では,入力テキストを汎用言語モデルBERTを利用して分散表現として表現する.BERTのモデルとしては,日本語Wikipediaを用いて学習された事前学習モデルを用いる.しかし,傷病の程度を推定するというタスクの正解率を向上させるために,四つの工夫,(1)クラスウェイト,(2)Ordinal Classification,(3)マルチタスクラーニング,(4)トークンラベル推定による追加学習モデル,を導入する.これらの工夫を用いる場合と用いない場合において,傷病の程度の推定の正解率やMacro F1,RMSE,混同行列による評価にどのような影響が出るかを検証した.その結果,(1)クラスウェイト,並びに,(2)Ordinal Classificationを導入した際に,Macro F1の向上とRMSEの改善が得られるという結果となった.また,(3)マルチタスクラーニングを導入した際に正解率の向上が見られた.
  • 莊司 慶行, 相原 健郎, 大島 裕明, 神門 典子, 白石 晃一, 中島 悠太, 山本 岳洋, 山本 祐輔
    情報処理学会論文誌 63(2) 364-377 2022年2月15日  査読有り
    本研究では,提示型検索モデル(Ostensive Search Model)に基づくインタフェースによって鑑賞者個人の興味を反映したミュージアム体験を可能にする電子ガイドを提案し,そのログを分析することで実現可能になった事前学習,事後学習支援システムについても提案する.我々は,国立民族学博物館(みんぱく)の展示物のうち3,053点について,展示物の解説やビデオなどの詳細情報を検索し,メモなどのアノテーションを付与できるiPad用アプリケーションである「みんぱくガイド」を作成した.みんぱくガイドは,鑑賞者が新しい展示物に気付いたり,興味を明確化することができるように,一覧性の高い検索結果画面を中心に情報探索を繰り返せるインタフェースを持っている.このような電子ガイドの操作履歴や位置情報などのログを用いることで,個人のミュージアム体験を色濃く反映した事前・事後学習支援を可能にした.事前学習支援システムでは,ミュージアムに行く前にカードを整理しながら鑑賞計画を立てるウェブアプリケーションの利用を通じて,鑑賞者に自分が何を学びに行くかという鑑賞軸を自覚してもらう.また,事後学習を促す仕組みとして,ログから鑑賞者が興味を持った展示物を推定し,後から鑑賞体験を思い出しやすくするためのパーソナライズされたポストカードを自動生成するシステムも作成した. This paper proposes an electronic guide application that enables visitors to get a museum experience that reflects their individual interests through an interface based on an Ostensive Search Model. In addition, we propose a pre-learning and post-learning support system that can be connected to our electronic guide. The system is based on a search result screen with a high level of browsability. We propose a system that allows users to search for detailed information such as explanatory texts and videos of exhibits they are interested in and add annotations such as handwritten notes. We created the “Minpaku Guide,” an iPad application that allows users to search for detailed information such as explanatory text and videos on exhibits of interest and add annotations such as notes. We also developed pre-learning support systems connected to our guide application. As a pre-learning support system, we created a web application that allows users to manually organize cards before visiting the museum to clarify what the visitors will learn beforehand. As a post-learning support system, we implemented a system that summarizes the visitor's operation log of the guide application into a postcard that helps to recall the viewing experience later.
  • Moeri Okuda, Hiroaki Ohshima
    Proceedings of the 2022 IEEE International Conference on Big Data and Smart Computing (BigComp 2022) 259-262 2022年1月  査読有り
  • Yoshiyuki Shoji, Kenro Aihara, Noriko Kando, Yuta Nakashima, Hiroaki Ohshima, Shio Takidaira, Masaki Ueta, Takehiro Yamamoto, Yusuke Yamamoto
    Proc. of ACM/IEEE Joint Conference on Digital Libraries 2021 (JCDL 2021) 120-129 2021年10月  査読有り
  • Bowen Wang, Liangzhi Li, Yuta Nakashima, Takehiro Yamamoto, Hiroaki Ohshima, Yoshiyuki Shoji, Kenro Aihara, Noriko Kando
    Proceedings of the 2021 International Conference on Multimedia Retrieval 2021年8月24日  査読有り
  • Makoto P. Kato, Hiroaki Ohshima, Ying-Hsang Liu, Hsin-Liang Chen
    SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval 2450-2456 2021年7月11日  
    This paper introduces a new test collection for ad-hoc dataset retrieval, which have been developed through a shared task called Data Search in the fifteenth NTCIR. This test collection consists of dataset collections derived from the US and Japanese governments' open data sites (i.e., Data.gov and e-Stat), as well as English and Japanese topics for these collections. Organizing the shared task in NTCIR, we conducted relevance judgments for datasets retrieved by 74 search systems, and included them in the test collection. In addition to the detailed description of the test collection, we conducted in-depth analysis on the test collection, and revealed (1) what techniques were used and effective, (2) what topics were difficult, and (3) large topic variability in the dataset retrieval task.
  • Momoha Murata, Hiroaki Ohshima, Yusuke Yamamoto
    Proceedings of the 10th International Congress on Advanced Applied Informatics (IIAI-AAI 2021) 2021年7月  査読有り
  • Soichiro Hamajima, Takehiro Yamamoto, Hiroaki Ohshima
    Proceedings of the 10th International Congress on Advanced Applied Informatics (IIAI-AAI 2021) 2021年7月  査読有り
  • Yoshiyuki Shoji, Kenro Aihara, Martin J. Dürs, Noriko Kando, Takuya Nakaya, Hiroaki Ohshima, Takehiro Yamamoto, Yusuke Yamamoto
    Joint Proceedings of the 2nd Workshop on Bridging the Gap between Information Science, Information Retrieval and Data Science, and 3rd Workshop on Evaluation of Personalisation in Information Retrieval co-located with 6th ACM SIGIR Conference on Human Information Interaction and Retrieval (WEPIR 2021) 79-87 2021年3月  査読有り
  • Masaki Ueta, Tomoya Hashiguchi, Huu-Long Pham, Yoshiyuki Shoji, Noriko Kando, Yusuke Yamamoto, Takehiro Yamamoto, Hiroaki Ohshima
    Joint Proceedings of the 2nd Workshop on Bridging the Gap between Information Science, Information Retrieval and Data Science, and 3rd Workshop on Evaluation of Personalisation in Information Retrieval co-located with 6th ACM SIGIR Conference on Human Information Interaction and Retrieval (WEPIR 2021) 96-104 2021年3月  査読有り
  • Katsurou Takahashi, Hiroaki Ohshima
    The Journal of Supercomputing 77(9) 9848-9878 2021年2月  査読有り
  • Tomoya Hashiguchi, Takehiro Yamamoto, Sumio Fujita, Hiroaki Ohshima
    Transactions of the Japanese Society for Artificial Intelligence 36(1) WI2-13 2021年  
    In this study, we tackle the problem of retrieving questions from a corpus archived in a Community Question Answering service that a consultant having distress can feel empathy with them. We hypothesize that the consultant feels empathy with the questions having a similar situation with that of the consultant’s distress, and propose a method of retrieving similar sentences focusing on the situation of the distress. Specifically, we propose two approaches to fine-tuning the pre-trained BERT model so that the learned model better captures the similarity of the situation between distress. One tries to extract only the words representing the situation of the distress, the other tries to predict whether the two sentences show the same situation. The data for training the models are gathered by the crowdsourcing task where the workers are asked to gather the sentences whose situation is similar to the given sentence and to annotate the words in the sentences that represent the situation. The data is then used to fine-tune the BERT model. The effectiveness of the proposed methods is evaluated with the baselines such as TF-IDF, Okapi BM25, and the pre-trained BERT. The results of the experiment with 20 queries showed that one of our methods achieved the highest nDCG@5 while we could not observe any significant differences among the methods.
  • Yusei Nakata, Naoki Muramoto, Takehiro Yamamoto, Sumio Fujita, Hiroaki Ohshima
    Transactions of the Japanese Society for Artificial Intelligence 36(1) WI2-10 2021年  
    In this study, we propose a method to predict whether a web searcher will purchase a camera in a near future based on his/her web search log. With the increasing popularity of online shopping at EC sites, more and more users are searching for products through web searches and actually purchasing them at EC sites. This indicates that, by analyzing the query log of a searcher, it is possible to predict whether the searcher will purchase the product in the near future. Therefore, we construct a classifier by collecting past web search query logs of searchers who have purchased cameras and those who have not purchased them. In the experiment, we used a web search query log of Yahoo! JAPAN and the product purchase histories of Yahoo! JAPAN Shopping to verify the results. We collected thousands of users who purchased cameras in a certain period and other users in the same number who didn’t purchase but issued queries related to cameras. By analyzing the classifier trained with the prepared dataset, we verify the accuracy of the prediction, the period of time required for the prediction, and whether there are any characteristic words that suggest the purchase.
  • 中田 祐誠, 村本 直樹, 山本 岳洋, 藤田 澄男, 大島 裕明
    人工知能学会論文誌 36(1) WI2-C_1-10 2021年1月  査読有り
  • 橋口 友哉, 山本 岳洋, 藤田 澄男, 大島 裕明
    人工知能学会論文誌 36(1) WI2-B_1-13 2021年1月  査読有り
  • Makoto P. Kato, Wiradee Imrattanatrai, Takehiro Yamamoto, Hiroaki Ohshima, Katsumi Tanaka
    Proceedings of the 42nd European Conference on IR Research (ECIR 2020) 83-96 2020年4月  査読有り
  • 白髪 宙海, 村本 直樹, 高橋 克郎, 大島 裕明
    日本データベース学会和文論文誌 18-J(9) 2020年3月  査読有り
  • Kilho Shin, Kenta Okumoto, David Shepard, Tetsuji Kuboyama, Takako Hashimoto, Hiroaki Ohshima
    203-213 2020年2月  査読有り
  • Kilho Shin, Kenta Okumoto, David Lawrence Shepard, Akira Kusaba, Takako Hashimoto, Jorge Amari, Keisuke Murota, Junnosuke Takai, Tetsuji Kuboyama, Hiroaki Ohshima
    Agents and Artificial Intelligence 421-444 2020年  査読有り
  • Rabin Maharjan, Koichi Shiraishi, Takehiro Yamamoto, Yusuke Yamamoto, Hiroaki Ohshima
    PervasiveHealth: Pervasive Computing Technologies for Healthcare 2019年12月2日  
    In this study, we developed an Internet of Things (IoT) monitoring device to monitor over the people inside a room.We collected sen-sor data at a specific location using the device. Based on the data, we tried to predict the behavior of the person at that location. Mon-itoring and predicting human daily behavior is trivial task. Most of the research on monitoring and predicting daily life behavior are based on the data available from smart home [7] [16] [17]. But smart home is expensive compare to normal home, as different kind of sensor are attached in the room and have more facilities. So, we developed a low cost IoT monitoring device and predict the daily life behavior of human from the sensor data taken from the device.We can extract information from the daily life behavior and share it with the family living in distant places.
  • Yusuke Nakano, Hiroaki Ohshima, Yusuke Yamamoto
    PervasiveHealth: Pervasive Computing Technologies for Healthcare 2019年12月2日  
    In this study, we propose a method to classify genre-based films using film screenplays. The proposed method vectorizes films into two aspects, i.e., film content (i.e., what films tell viewers) and screenplay structure (i.e., how the films narrate stories), and classi-fies film genres using the support vector machine method. We ap-plied the Doc2Vec algorithm to screenplay structure and to handle film content. In film production, for vectorizing films, we used the statistics of the four screenplay elements: Scene, action, dialogue, and transition. Compared with baseline methods, the evaluation showed that the proposed method is better for classifying films of specific genres.
  • Katsurou Takahashi, Hiroaki Ohshima, Kilho Shin
    PervasiveHealth: Pervasive Computing Technologies for Healthcare 2019年12月2日  
    In this paper, given the subject-verb pairs, we propose a compu-tational model to express the difference of the meaning of a verb when the subject has changed. We propose a method to gener- A te metaphorical expressions consist of subject-verb pairs from the model. "Airship swims" is one of the example. It is the expression about the event that an airship flies in the sky gracefully. There are a few reasons why the expression is accepted for people. "airship flie" and the motion of a sea creature, for example "whale swims," represent both "the normal move in a space" and there is a simi-larity. Given the input ("airship," "fly"), we propose a method to detect a verb "swims" to generate metaphorical expressions consid-ering these similarity. At first, we test which vectorization method is the best as the vectorization of a subject-verb pair. We calcu-late a transformation matrix to conserve between the meaning of (non-human subject, verb) pairs and the meaning of ("man", verb) pairs. We calcurate the transformation matrix between them us-ing the stable meaning verbs as the anchors. In this paper, we test an hypothesis that we can use these transformation matrices to find an appropriate verb considering the difference of the mean-ing occured from the subjects.We gather 67 cases of target figura-tive expressions fromWeb.We evaluated the proposed method by defining the information retrieval problem of verbs.
  • 岡 隆之介, 大島 裕明, 楠見 孝
    心理学研究 90(1) 53-62 2019年4月25日  査読有り
  • Katsurou Takahashi, Hiroaki Ohshima
    2019 IEEE International Conference on Big Data and Smart Computing, BigComp 2019 - Proceedings 2019年4月1日  
    We proposed a search method with a query by example in a known domain for information in an unknown domain. It seems natural the relation that 'Pikachu in 2000s' which is similar to 'Dumbo in 1980s.' Pikachu and Dumbo are the popular animation characters in these decades. For example, given three entities, such as Pikachu, 2000s and 1980s, we search Dumbo by the relation 'Pikachu in 2000s as Dumbo in 1980s.' The proposed method is based on transformation matrices to bridge word vector spaces. Especially, we focus on transitive relations such as the relation that 'Dumbo in 1980s' is similar to 'Garfield in 1990s' and to 'Pikachu in 2000s' to solve the problem. Experimental results show that the proposed method has some advantage when there are a little common words between source and target terms.
  • Zehua Yang, Yusuke Yamamoto, Takehiro Yamamoto, Noriko Kando, Hiroaki Ohshima
    Proceedings of the Second Workshop on Evaluating Personalized Information Retrieval, Glasgow, March 14, 2019 (held in conjunction with the 4th ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR 2019), March 10-14, 2019) 2 1-4 2019年3月  査読有り

MISC

 206

書籍等出版物

 4

講演・口頭発表等

 4

共同研究・競争的資金等の研究課題

 19

産業財産権

 3

学術貢献活動

 2