CVClient

金子 一郎

カネコ イチロウ  (Ichiro Kaneko)

基本情報

所属
兵庫県立大学 環境人間学部 食環境栄養課程 准教授
学位
博士(栄養学)(徳島大学)

研究者番号
40389515
J-GLOBAL ID
201801001159162383
researchmap会員ID
B000340513

論文

 58
  • Peter W Jurutka, Zainab Khan, Ichiro Kaneko, Michael A Sausedo, Pritika H Shahani, Mairi MacNeill, Aleksandra Grozic, Jaskaran Bhogal, Johnathon Swierski, Michael R Wentzel, Christine Chhun, Michael T Applegate, San Raban, Samir Ibrahim, Karar Alwaeli, Tracie L Feldman, Kayla J Pomeroy, Joseph T Sarnowski, Natalia Nguyen, Joseph W Ziller, Ning Ma, Arjan van der Vaart, Jennifer F Hackney, Pamela A Marshall, Carl E Wagner
    Bioorganic & medicinal chemistry 119 118059-118059 2025年3月1日  査読有り筆頭著者
    Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay. The EC50 values for these analogs, and their corresponding effectiveness in activating both LXR/LXRE and the Sterol Regulatory Element Binding Protein (SREBP) promoter in comparison to 1, suggests that these compounds likely display a range of therapeutic potential and differential side effect profiles. Several analogs also exhibited reduced retinoic-acid-receptor (RAR) cross-signaling implying that they possess enhanced selectivity towards activation of cellular RXR versus RAR pathways. These results show that modifying potent rexinoids such as CD3254 or partial agonists such as CBt-PMN can result in improved target receptor selectivity and enhanced potency, such as compounds 26, 27 and 28 in this study, compared with approved therapeutics such as compound 1, where these three compounds exhibited similar potency as 1, but 26 and 27 lower RAR and SREBP activation than 1.
  • Yoji Kato, Sakiko Suzuki, Akari Higashiyama, Ichiro Kaneko, Mitsugu Akagawa, Miyu Nishikawa, Shinichi Ikushiro
    Journal of Agricultural and Food Chemistry 2025年2月5日  査読有り
  • Minori Uga, Ichiro Kaneko, Yuji Shiozaki, Megumi Koike, Naoko Tsugawa, Peter W Jurutka, Ken-Ichi Miyamoto, Hiroko Segawa
    Biomolecules 14(6) 2024年6月17日  査読有り責任著者
    Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.
  • Yoji Kato, Asahi Sakanishi, Kaoru Matsuda, Mai Hattori, Ichiro Kaneko, Miyu Nishikawa, Shinichi Ikushiro
    Free radical biology & medicine 206 74-82 2023年9月  査読有り
    The SARS-CoV-2 main protease is an essential molecule for viral replication and is often targeted by medications to treat the infection. In this study, we investigated the possible inhibitory action of endogenous quinones on the enzyme. Recombinant SARS-CoV-2 main protease was exposed to tryptamine-4,5-dione (TD) or quinone from 5-hydroxyindoleacetic acid (Q5HIAA). As a result, the protease activity was considerably decreased in a dose-dependent manner. The IC50 values of the quinones toward the enzyme were approximately 0.28 μM (TD) and 0.49 μM (Q5HIAA). Blot analyses using specific antibodies to quinone-modified proteins revealed that quinones were adducted to the enzyme at concentrations as low as 0.12 μM. Intact mass analyses showed that one or two quinone molecules were covalently adducted onto the main protease. Chymotrypsin-digested main protease analyses revealed that the quinones bind to thiol residues at the enzyme's active site. When TD or Q5HIAA were exposed to cultured cells expressing the viral enzyme, quinone-modified enzyme was identified in the cell lysate, suggesting that even extracellularly generated quinones could react with the viral enzyme expressed in an infected cell. Thus, these endogenous quinones could act as inhibitors of the viral enzyme.
  • Sumire Sasaki, Yuji Shiozaki, Ai Hanazaki, Megumi Koike, Kazuya Tanifuji, Minori Uga, Kota Kawahara, Ichiro Kaneko, Yasuharu Kawamoto, Pattama Wiriyasermkul, Tomoka Hasegawa, Norio Amizuka, Ken-ichi Miyamoto, Shushi Nagamori, Yoshikatsu Kanai, Hiroko Segawa
    Scientific Reports 12(1) 6353-6353 2022年5月  査読有り
    Abstract Renal type II sodium-dependent inorganic phosphate (Pi) transporters NaPi2a and NaPi2c cooperate with other organs to strictly regulate the plasma Pi concentration. A high Pi load induces expression and secretion of the phosphaturic hormones parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) that enhance urinary Pi excretion and prevent the onset of hyperphosphatemia. How FGF23 secretion from bone is increased by a high Pi load and the setpoint of the plasma Pi concentration, however, are unclear. Here, we investigated the role of Transmembrane protein 174 (Tmem174) and observed evidence for gene co-expression networks in NaPi2a and NaPi2c function. Tmem174 is localized in the renal proximal tubules and interacts with NaPi2a, but not NaPi2c. In Tmem174-knockout (KO) mice, the serum FGF23 concentration was markedly increased but increased Pi excretion and hypophosphatemia were not observed. In addition, Tmem174-KO mice exhibit reduced NaPi2a responsiveness to FGF23 and PTH administration. Furthermore, a dietary Pi load causes marked hyperphosphatemia and abnormal NaPi2a regulation in Tmem174-KO mice. Thus, Tmem174 is thought to be associated with FGF23 induction in bones and the regulation of NaPi2a to prevent an increase in the plasma Pi concentration due to a high Pi load and kidney injury.

MISC

 77

書籍等出版物

 9

講演・口頭発表等

 57

共同研究・競争的資金等の研究課題

 10