研究者業績

八田 公平

kohei hatta

基本情報

所属
兵庫県立大学 大学院 理学研究科 生体情報学I講座  教授
学位
理学博士(1988年3月 京都大学)

J-GLOBAL ID
201101080769757740
researchmap会員ID
B000002023

論文

 50
  • Masataka Nikaido, Ayaka Shirai, Yumiko Mizumaki, Shuji Shigenobu, Naoto Ueno, Kohei Hatta
    Development, growth & differentiation 2023年7月15日  査読有り
    For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The osr2 is expressed in the anterior part, while foxP4 in its distal part. Also, we reported the expression pattern of pdgfra for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.
  • Shin ichi Okamoto, Kohei Hatta
    Scientific Reports 12(1) 2018-2018 2022年12月  査読有り
    Zebrafish larval gut could be considered as an excellent model to study functions of vertebrate digestive organs, by virtue of its simplicity and transparency as well as the availability of mutants. However, there has been scant investigation of the detailed behavior of muscular and enteric nervous systems to convey bolus, an aggregate of digested food. Here we visualized peristalsis using transgenic lines expressing a genetically encoded Ca2+ sensor in the circular smooth muscles. An intermittent Ca2+ signal cycle was observed at the oral side of the bolus, with Ca2+ waves descending and ascending from there. We also identified a regular cycle of weaker movement that occurs regardless of the presence or absence of bolus, corresponding likely to slow waves. Direct photo-stimulation of circular smooth muscles expressing ChR2 could cause local constriction of the gut, while the stimulation of a single or a few neurons could cause the local induction or arrest of gut movements. These results indicate that the larval gut of zebrafish has basic features found in adult mammals despite the small number of enteric neurons, providing a foundation for the study, at the single-cell level in vivo, in controlling the gut behaviors in vertebrates.
  • Maria Ohno, Masataka Nikaido, Natsumi Horiuchi, Koichi Kawakami, Kohei Hatta
    Development (Cambridge) 148(2) 195339-- 2021年1月26日  査読有り
    The enteric nervous system (ENS), which is derived from neural crest, is essential for gut function, and its deficiency causes severe congenital diseases. Since the capacity for ENS regeneration in mammals is limited, additional complementary models would be useful. Here, we show that the ENS in zebrafish larvae at 10-15 days postfertilization is highly regenerative. After laser ablation, the number of enteric neurons recovered to ∼50% of the control by 10 days post-ablation (dpa). Using transgenic lines in which enteric neural crest-derived cells (ENCDCs) and enteric neurons are labeled with fluorescent proteins, we live imaged the regeneration process and found covering by neurites that extended from the unablated area and entry of ENCDCs into the ablated areas by 1-3 dpa. BrdU assays suggested that ∼80% of the enteric neurons and ∼90% of the Sox10-positive ENCDCs therein at 7 dpa were generated through proliferation. Thus, ENS regeneration involves proliferation, entrance and neurogenesis of ENCDCs. This is the first report regarding the regeneration process of the zebrafish ENS. Our findings provide a basis for further in vivo research at single-cell resolution in this vertebrate model.
  • Mai Kuwata, Masataka Nikaido, Kohei Hatta
    Developmental Dynamics 248(6) 437-448 2019年6月  査読有り
    BACKGROUND: The enteric nervous system (ENS) is derived from enteric neural crest cells (ENCCs) that migrate into the gut. The zebrafish larva is a good model to study ENCC development due to its simplicity and transparency. However, little is known how individual ENCCs divide and become neurons. RESULTS: Here, by applying our new method of local heat-shock mediated Cre-recombination around the dorsal vagal area of zebrafish embryos we produced multicolored clones of ENCCs, and performed in vivo time-lapse imaging from ca. 3.5 to 4 days post-fertilization after arrival of ENCCs in the gut. Individual ENCCs migrated in various directions and were highly intermingled. The cell divisions were not restricted to a specific position in the gut. Antibody staining after imaging with anti-HuC/D and anti-Sox10 showed that an ENCC produced two neurons, or formed a neuron and an additional ENCC that further divided. At division, the daughter cells immediately separated. Afterward, some made soma-soma contact with other ENCCs. CONCLUSIONS: We introduced a new method of visualizing individual ENCCs in the zebrafish gut, describing their behaviors associated with cell division, providing a foundation to study the mechanism of proliferation and neurogenesis in the ENS in vertebrates.
  • Masataka Nikaido, Saki Izumi, Honoka Ohnuki, Yuki Takigawa, Kyo Yamasu, Kohei Hatta
    Gene Expression Patterns 28 12-21 2018年6月  査読有り
    The enteric nervous system (ENS) is the largest part of the peripheral nervous system in vertebrates. Toward the visualization of the development of the vertebrate ENS, we report our creation of a new transgenic line, Tg(chata:GGFF2) which has a 1.5-kb upstream region of the zebrafish choline acetyltransferase a (chata) gene followed by modified green fluorescent protein (gfp). During development, GFP + cells were detected in the gut by 60 h post-fertilization (hpf). In the gut of 6- and 12-days post-fertilization (dpf) larvae, an average of 92% of the GFP + cells were positive for the neuronal marker HuC/D, suggesting that GFP marks enteric neurons in this transgenic line. We also observed that 66% of the GFP + cells were choline acetyltransferase (ChAT)-immunopositive at 1.5 months. Thus, GFP is expressed at the larval stages at which ChAT protein expression is not yet detected by immunostaining. We studied the spatiotemporal pattern of neural differentiation in the ENS by live-imaging of this transgenic line. We observed that GFP + or gfp + cells initially formed a pair of bilateral rows at 60 hpf or 53 hpf, respectively, in the migrating enteric neural crest cells. Most of the GFP + cells did not migrate, and most of the new GFP + cells were added to fill the space among the previously formed GFP + cells. GFP expression reached the anus by 72 hpf. New GFP + cells then also appeared in the dorsal and ventral sides of the initial GFP + rows, resulting in their distribution on the entire gut by 4 dpf. A small number of new GFP + cells were found to move among older GFP + cells just before the cells stopped migration, suggesting that the moving GFP + cells may represent neural precursor cells searching for a place for the final differentiation. Our data suggest that the Tg(chata:GGFF2) line could serve as a useful tool for studies of enteric neural differentiation and cell behavior.
  • Masataka Nikaido, Joaquin Navajas Acedo, Kohei Hatta, Tatjana Piotrowski
    Developmental Biology 431(2) 215-225 2017年11月15日  査読有り
    The lateral line system is a mechanosensory systems present in aquatic animals. The anterior and posterior lateral lines develop from anterior and posterior lateral line placodes (aLLp and pLLp), respectively. Although signaling molecules required for the induction of other cranial placodes have been well studied, the molecular mechanisms underlying formation of the lateral line placodes are unknown. In this study we tested the requirement of multiple signaling pathways, such as Wnt, Bmp Fgf, and Retinoic Acid for aLLp and pLLp induction. We determined that aLLp specification requires Fgf signaling, whilst pLLp specification requires retinoic acid which inhibits Fgf signaling. pLLp induction is also independent of Wnt and Bmp activities, even though these pathways limit the boundaries of the pLLp. This is the first report that the aLLp and pLLp depend on different inductive mechanisms and that pLLp induction requires the inhibition of Fgf, Wnt and Bmp signaling.
  • Saki Shiomoto, Shota Nomura, Kenta Kuwabara, Kentaro Uesugi, Akihisa Takeuchi, Yoshio Suzuki, Takanori Ikenaga, Masataka Nikaido, Kohei Hatta
    Microscopy 64(suppl 1) i137.1-i137 2015年11月10日  
  • Mariko Itoh, Kohei Hatta
    Neuroscience Research 94 17-27 2015年5月1日  査読有り
    Stereotyped movement of paired pectoral fins in zebrafish larvae could be considered a simple model with which to investigate the neural basis of behavior. Using a high-speed camera, we explored the repertoire of pectoral fin movements by naturally behaving larvae at 5-6 days post-fertilization. Previously, two types of fin movements were characterized in association with locomotion: 'CRAWLing,' an alternating fin movement associated with slow swimming, and 'TUCKing,' the adduction of both fins associated with fast swimming. We here describe a third mode of fin movement, which we call 'Munch's SCREAM', in which both pectoral fins were flipped anteriorly so that they reached the skin on the sides of the head, thus covering the otic vesicles. This behavior occurred spontaneously and was often associated with a slight regression or a sudden bending and change in body orientation. It could be also induced effectively in the agarose-embedded larvae by tactile stimulation on the skin around the eye and nose, some of which are associated with struggling, in which waves of bending propagate from the tail to the head. Larvae can still CRAWL and perform the SCREAM even when their forebrain and midbrain have been removed, suggesting that the neural circuits involved in the SCREAM are present in the hindbrain and/or spinal cord.
  • Mariko Itoh, Tamami Yamamoto, Yohei Nakajima, Kohei Hatta
    Current biology : CB 24(24) R1155-6 2014年12月15日  査読有り
  • Pricila Khan Moly, Takanori Ikenaga, Chihiro Kamihagi, A F M Tariqul Islam, Kohei Hatta
    Developmental neurobiology 74(6) 616-32 2014年6月  査読有り
    Glycine is a major inhibitory neurotransmitter in the central nervous system of vertebrates. Here, we report the initial development of glycine-immunoreactive (Gly-ir) neurons and fibers in zebrafish. The earliest Gly-ir cells were found in the hindbrain and rostral spinal cord by 20 h post-fertilization (hpf). Gly-ir cells in rhombomeres 5 and 6 that also expressed glycine transporter 2 (glyt2) mRNA were highly stereotyped; they were bilaterally located and their axons ran across the midline and gradually turned caudally, joining the medial longitudinal fascicles in the spinal cord by 24 hpf. Gly-ir neurons in rhombomere 5 were uniquely identified, since there was one per hemisegment, whereas the number of Gly-ir neurons in rhombomere 6 were variable from one to three per hemisegment. Labeling of these neurons by single-cell electroporation and tracing them until the larval stage revealed that they became MiD2cm and MiD3cm, respectively. The retrograde labeling of reticulo-spinal neurons in Tg(glyt2:gfp) larva, which express GFP in Gly-ir cells, and a genetic mosaic analysis with glyt2:gfp DNA construct also supported this notion. Gly-ir cells were also distributed widely in the anterior brain by 27 hpf, whereas glyt2 was hardly expressed. Double staining with anti-glycine and anti-GABA antibodies demonstrated distinct distributions of Gly-ir and GABA-ir cells, as well as the presence of doubly immunoreactive cells in the brain and placodes. These results provide evidence of identifiable glycinergic (Gly-ir/glyt2-positive) neurons in vertebrate embryos, and they can be used in further studies of the neurons' development and function at the single-cell level.
  • Sharon R Aigler, David Jandzik, Kohei Hatta, Kentaro Uesugi, David W Stock
    Proceedings of the National Academy of Sciences of the United States of America 111(21) 7707-12 2014年5月27日  査読有り
    The apparent irreversibility of the loss of complex traits in evolution (Dollo's Law) has been explained either by constraints on generating the lost traits or the complexity of selection required for their return. Distinguishing between these explanations is challenging, however, and little is known about the specific nature of potential constraints. We investigated the mechanisms underlying the irreversibility of trait loss using reduction of dentition in cypriniform fishes, a lineage that includes the zebrafish (Danio rerio) as a model. Teeth were lost from the mouth and upper pharynx in this group at least 50 million y ago and retained only in the lower pharynx. We identified regional loss of expression of the Ectodysplasin (Eda) signaling ligand as a likely cause of dentition reduction. In addition, we found that overexpression of this gene in the zebrafish is sufficient to restore teeth to the upper pharynx but not to the mouth. Because both regions are competent to respond to Eda signaling with transcriptional output, the likely constraint on the reappearance of oral teeth is the alteration of multiple genetic pathways required for tooth development. The upper pharyngeal teeth are fully formed, but do not exhibit the ancestral relationship to other pharyngeal structures, suggesting that they would not be favored by selection. Our results illustrate an underlying commonality between constraint and selection as explanations for the irreversibility of trait loss; multiple genetic changes would be required to restore teeth themselves to the oral region and optimally functioning ones to the upper pharynx.
  • Shin-ichi Okamoto, Masashi Nakagawa, Kohei Hatta
    Zoological science 30(9) 716-23 2013年9月  査読有り
    Ca(2+) plays important roles in animal development and behavior. Various Ca(2+) transients during development have been reported in non-neuronal tissues, mainly by using synthesized calcium indicators. Here we used GCaMP3, a genetically encoded calcium indicator, to monitor stochastic Ca(2+) waves, in zebrafish embryos. To express GCaMP3 systemically throughout the body, its mRNA was injected into fertilized eggs. In the neuroepithelium of developing anterior brain and retina at 12-20 hours post-fertilization, we found spontaneously occurring stochastic Ca(2+) waves. Each Ca(2+) wave typically appeared in a randomly distributed spot, spread for 5-60 sec to form an area whose position and size varied each time with a diameter ranging from 10 to 160 µm, and then shrank and decreased to 50% brightness in 4-67 sec. A precise examination of the cellular distribution using Nipkow disk multibeam confocal laser scanning indicated that the Ca(2+) waves spread cell by cell. 2-APB, IP3-receptor inhibitor, but not carbenoxolone, a gap junction blocker, inhibit these Ca(2+) waves. Stronger fluorescence was found in the cytoplasm compared to the nuclei in the resting cells, and localized fluorescence was observed at the spindle poles in dividing cells. Ca(2+) waves also spread through the dividing cells. Our results reveal a novel type of cell-to-cell communication through the neuroepithelium in the developing zebrafish brain and retina, distinct from communication through neuron-neuron circuits. Our findings also indicated that GCaMP3 was useful for monitoring both stochastic and behavior-related Ca(2+) waves in the nervous system and skeletal muscles in zebrafish embryos.
  • Shimpei Katsumoto, Kohei Hatta, Masashi Nakagawa
    Zoological science 30(5) 352-9 2013年5月  査読有り
    Ascidian Ciona intestinalis tadpole larvae exhibit left-right asymmetry. The photoreceptors are situated on the right side of the sensory vesicle, and the tail curls along the left side of the trunk within the chorion. In tailbud embryos, the Ci-pitx gene is expressed in the left-side epidermis. It was previously reported that embryos generated from naked eggs, which lack the chorionic membrane and accessory cells (follicle cells attached to the outside of the chorion and test cells covering the inner surface of the chorion), show bilateral expression of Ci-pitx. This suggested that the chorion or accessory cells are needed for generation of asymmetry. Here, we show that a brief treatment with 60% artificial seawater (ASW) before, but not after, the neurula stage results in bilateral expression of Ci-pitx in the chorion of tailbud embryos, loss of follicle cells, and randomization of both the direction of tail curling and the locations of photoreceptors in larvae. This treatment also impaired the transient counterclockwise rotation within the chorion at the neurula stage. Nearly all test cells in the chorion died following 60% ASW treatment. These results suggest that dead test cells blocked the neural rotation and impaired left-right asymmetry. We also showed that tailbud embryos and larvae generated from defolliculated eggs produced by 80% ASW treatment, in which the test cells were alive, showed normal left-right asymmetry, suggesting that the follicle cells were not essential for asymmetric morphogenesis.
  • Sohei Nakayama, Takanori Ikenaga, Koichi Kawakami, Fumihito Ono, Kohei Hatta
    DEVELOPMENT GROWTH & DIFFERENTIATION 54(2) 202-215 2012年2月  査読有り
    Zebrafish is a good model for studying vertebrate development because of the availability of powerful genetic tools. We are interested in the study of the craniofacial skeletal structure of the zebrafish. For this purpose, we performed a gene trap screen and identified a Gal4 gene trap line, SAGFF(LF)134A. We then analyzed the expression pattern of SAGFF(LF)134A;Tg(UAS:GFP) and found that green fluorescent protein (GFP) was expressed not only in craniofacial skeletal elements but also in the vascular system, as well as in the nervous system. In craniofacial skeletal elements, strong GFP expression was detected not only in chondrocytes but also in the perichondrium. In the vascular system, GFP was expressed in endothelium-associated cells. In the spinal cord, strong GFP expression was found in the floor plate, and later in the dorsal radial glia located on the midline. Taking advantage of this transgenic line, which drives Gal4 expression in specific tissues, we crossed SAGFF(LF)134A with several UAS reporter lines. In particular, time-lapse imaging of photoconverted floor-plate cells of SAGFF(LF)134A;Tg(UAS:KikGR) revealed that the floor-plate cells changed their shape within 36 h from cuboidal/trapezoidal to wine glass shaped. Moreover, we identified a novel mode of association between axons and glia. The putative paths for the commissural axons, including pax8-positive CoBL interneurons, were identified as small openings in the basal endfoot of each floor plate. Our results indicate that the transgenic line would be useful for studying the morphogenesis of less-well-characterized tissues of interest, including the perichondrium, dorsal midline radial glia, late-stage floor plate, and vascular endothelium-associated cells.
  • Pricila Khan Moly, Kohei Hatta
    Neuroscience research 70(3) 251-9 2011年7月  
    Glycinergic neurons are the major inhibitory neurons in the vertebrate central nervous system. In teleosts, they play important roles in the escape response by regulating the activity of the Mauthner (M-) cells. Here we studied the contact between glycinergic axons and the M-cells in early zebrafish embryos by double immunostaining with an anti-glycine antibody and the 3A10 antibody that labels M-cells. We also studied a transgenic line, Tg(GlyT2:GFP), in which GFP is expressed under the control of the promoter for the glycine transporter-2 gene. The initial contacts by ascending glycinergic axons on the M-soma were observed within 27h post-fertilization (hpf) on the lateral part of the ventral surface of the M-soma. Stochastic labeling of glycinergic neurons was then performed by injecting a GlyT2:GFP construct into early cleaving eggs. We identified the origin of the earliest glycinergic axons that contact the M-soma as commissural neurons, located in the anterior spinal cord, whose axons ascend along the lateral longitudinal fascicles with a short descending branch. We also found, in the fourth rhombomere, late-developed glycinergic commissural neurons whose axons contact anterior or posterior edge of both M-somas. This study provides the first example of the initial development of an inhibitory network on an identifiable neuron in vertebrates.
  • Takanori Ikenaga, Jason M. Urban, Nichole Gebhart, Kohei Hatta, Koichi Kawakami, Fumihito Ono
    JOURNAL OF COMPARATIVE NEUROLOGY 519(8) 1562-1579 2011年6月  査読有り
    In the formation of the spinal network, various transcription factors interact to develop specific cell types. By using a gene trap technique, we established a stable line of zebrafish in which the red fluorescent protein (RFP) was inserted into the pax8 gene. RFP insertion marked putative pax8-lineage cells with fluorescence and inhibited pax8 expression in homozygous embryos. Pax8 homozygous embryos displayed defects in the otic vesicle, as previously reported in studies with morpholinos. The pax8 homozygous embryos survived to adulthood, in contrast to mammalian counterparts that die prematurely. RFP is expressed in the dorsal spinal cord. Examination of the axon morphology revealed that RFP(+) neurons include commissural bifurcating longitudinal (CoBL) interneurons, but other inhibitory neurons such as commissural local (CoLo) interneurons and circumferential ascending (CiA) interneurons do not express RFP. We examined the effect of inhibiting pax2a/pax8 expression on interneuron development. In pax8 homozygous fish, the RFP(+) cells underwent differentiation similar to that of pax8 heterozygous fish, and the swimming behavior remained intact. In contrast, the RFP(+) cells of pax2a/pax8 double mutants displayed altered cell fates. CoBLs were not observed. Instead, RFP(+) cells exhibited axons descending ipsilaterally, a morphology resembling that of V2a/V2b interneurons. J. Comp. Neurol. 519: 1562-1579, 2011. (C) 2010 Wiley-Liss, Inc.
  • Akiko Ishioka, Tomoko Jindo, Toshihiro Kawanabe, Kohei Hatta, Mst. Shahnaj Parvin, Masataka Nikaido, Yuri Kuroyanagi, Hiroyuki Takeda, Kyo Yamasu
    DEVELOPMENTAL BIOLOGY 350(1) 154-168 2011年2月  査読有り
    Zebrafish hoxb1b is expressed during epiboly in the posterior neural plate, with its anterior boundary at the prospective r4 region providing a positional cue for hindbrain formation. A similar function and expression is known for Hoxa1 in mice, suggesting a shared regulatory mechanism for hindbrain patterning in vertebrate embryos. To understand the evolution of the regulatory mechanisms of key genes in patterning of the central nervous system, we examined how hoxb1b transcription is regulated in zebrafish embryos and compared the regulatory mechanisms between mammals and teleosts that have undergone an additional genome duplication. By promoter analysis, we found that the expression of the reporter gene recapitulated hoxb1b expression when driven in transgenic embryos by a combination of the upstream 8.0-kb DNA and downstream 4.6-kb DNA. Furthermore, reporter expression expanded anteriorly when transgenic embryos were exposed to retinoic acid (RA) or LiCl, or injected with fgf3/8 mRNA, implicating the flanking DNA examined here in the responsiveness of hoxb1b to posteriorizing signals. We further identified at least two functional RA responsive elements in the downstream DNA that were shown to be major regulators of early hoxb1b expression during gastrulation, while the upstream DNA, which harbors repetitive sequences with apparent similarity to the autoregulatory sequence of mouse Hoxb1, contributed only to later hoxb1b expression, during somitogenesis. Possible implications in vertebrate evolution are discussed based on these findings. (C) 2010 Elsevier Inc. All rights reserved.
  • Masakazu Hashimoto, Kyosuke Shinohara, Jianbo Wang, Shingo Ikeuchi, Satoko Yoshiba, Chikara Meno, Shigenori Nonaka, Shinji Takada, Kohei Hatta, Anthony Wynshaw-Boris, Hiroshi Hamada
    NATURE CELL BIOLOGY 12(2) 170-U172 2010年2月  査読有り
    Rotational movement of the node cilia generates a leftward fluid flow in the mouse embryo(1) because the cilia are posteriorly tilted(2,3). However, it is not known how anterior-posterior information is translated into the posterior tilt of the node cilia. Here, we show that the basal body of node cilia is initially positioned centrally but then gradually shifts toward the posterior side of the node cells. Positioning of the basal body and unidirectional flow were found to be impaired in compound mutant mice lacking Dvl genes. Whereas the basal body was normally positioned in the node cells of Wnt3a(-/-) embryos, inhibition of Rac1, a component of the noncanonical Wnt signalling pathway, impaired the polarized localization of the basal body in wild-type embryos. Dvl2 and Dvl3 proteins were found to be localized to the apical side of the node cells, and their location was polarized to the posterior side of the cells before the posterior positioning of the basal body. These results suggest that posterior positioning of the basal body, which provides the posterior tilt to node cilia, is determined by planar polarization mediated by noncanonical Wnt signalling.
  • Tomonori Deguchi, Mariko Itoh, Hiroko Urawa, Tomohiro Matsumoto, Sohei Nakayama, Takashi Kawasaki, Takeshi Kitano, Shoji Oda, Hiroshi Mitani, Taku Takahashi, Takeshi Todo, Junichi Sato, Kiyotaka Okada, Kohei Hatta, Shunsuke Yuba, Yasuhiro Kamei
    DEVELOPMENT GROWTH & DIFFERENTIATION 51(9) 769-775 2009年12月  査読有り
    Heat shock promoters are powerful tools for the precise control of exogenous gene induction in living organisms. In addition to the temporal control of gene expression, the analysis of gene function can also require spatial restriction. Recently, we reported a new method for in vivo, single-cell gene induction using an infrared laser-evoked gene operator (IR-LEGO) system in living nematodes (Caenorhabditis elegans). It was demonstrated that infrared (IR) irradiation could induce gene expression in single cells without incurring cellular damage. Here, we report the application of IR-LEGO to the small fish, medaka (Japanese killifish; Oryzias latipes) and zebrafish (Danio rerio), and a higher plant (Arabidopsis thaliana). Using easily observable reporter genes, we successfully induced gene expression in various tissues in these living organisms. IR-LEGO has the potential to be a useful tool in extensive research fields for cell/tissue marking or targeted gene expression in local tissues of small fish and plants.
  • Atsuko Shimada, Mina Yabusaki, Hitomi Niwa, Hayato Yokoi, Kohei Hatta, Daisuke Kobayashi, Hiroyuki Takeda
    DEVELOPMENT 135(2) 281-290 2008年1月  査読有り
    The medaka fish (Oryzias latipes) is an emerging model organism for which a variety of unique developmental mutants have now been generated. Our recent mutagenesis screening of the medaka identified headfish (hdf), a null mutant for fgf receptor1 (fgfr1), which fails to develop structures in the trunk and tail. Despite its crucial role in early development, the functions of Fgfr1-mediated signaling have not yet been well characterized due to the complexity of the underlying ligand-receptor interactions. In our present study, we further elucidate the roles of this pathway in the medaka using the hdf (fgfr1) mutant. Because Fgfr1 is maternally supplied in fish, we first generated maternal-zygotic (MZ) mutants by transplanting homozygous hdf germ cells into sterile interspecific hybrids. Interestingly, the host hybrid fish recovered their fertility and produced donor-derived mutant progeny. The resulting MZ mutants also exhibited severe defects in their anterior head structures that are never observed in the corresponding zygotic mutants. A series of detailed analyses subsequently revealed that Fgfr1 is required for the anterior migration of the axial mesoderm, particularly the prechordal plate, in a cell-autonomous manner, but is not required for convergence movement of the lateral mesoderm. Furthermore, fgfr1 was found to be dispensable for initial mesoderm induction. The MZ hdf medaka mutant was thus found to be a valuable model system to analyze the precise role of fgfr1-mediated signaling in vertebrate early development.
  • Yoko Kurotaki, Kohei Hatta, Kazuki Nakao, Yo-ichi Nabeshima, Toshihiko Fujimori
    SCIENCE 316(5825) 719-723 2007年5月  査読有り
    The mechanisms controlling the establishment of the embryonic-abembryonic (E-Ab) axis of the mammalian blastocyst are controversial. We used in vitro time-lapse imaging and in vivo lineage labeling to provide evidence that the E-Ab axis of the mouse blastocyst is generated independently of early cell lineage. Rather, both the boundary between two-cell blastomeres and the E-Ab axis of the blastocyst align relative to the ellipsoidal shape of the zona pellucida (ZP), an extraembryonic structure. Lack of correlation between cell lineage and the E-Ab axis can be explained by the rotation of the embryo within the ZP.
  • Shinsuke Aramaki, Kohei Hatta
    DEVELOPMENTAL DYNAMICS 235(8) 2192-2199 2006年8月  査読有り
    A great many axons and dendrites intermingle to fasciculate, creating synapses as well as glomeruli. During live imaging in particular, it is often impossible to distinguish between individual neurons when they are contiguous spatially and labeled in the same fluorescent color. In an attempt to solve this problem, we have taken advantage of Dronpa, a green fluorescent protein whose fluorescence can be erased with strong blue light, and reversibly highlighted with violet or ultraviolet light. We first visualized a neural network with fluorescent Dronpa using the Ga14-UAS system. During the time-lapse imaging of axonal navigation, we erased the Dronpa fluorescence entirely; re-highlighted it in a single neuron anterogradely from the soma or retrogradely from the axon; then repeated this procedure for other single neurons. After collecting images of several individual neurons, we then recombined them in multiple pseudo-colors to reconstruct the network. We have also successfully re-highlighted Dronpa using two-photon excitation microscopy to label individual cells located inside of tissues and were able to demonstrate visualization of a Mauthner neuron extending an axon. These "optical dissection" techniques have the potential to be automated in the future and may provide an effective means to identify gene function in morphogenesis and network formation at the single cell level.
  • Kohei Hatta, Hitomi Tsujii, Tomomi Omura
    NATURE PROTOCOLS 1(2) 960-967 2006年  査読有り
    The tracking of cell fate, shape and migration is an essential component in the study of the development of multicellular organisms. Here we report a protocol that uses the protein Kaede, which is fluorescent green after synthesis but can be photoconverted red by violet or UV light. We have used Kaede along with confocal laser scanning microscopy to track labeled cells in a pattern of interest in zebrafish embryos. This technique allows the visualization of cell movements and the tracing of neuronal shapes. We provide illustrative examples of expression by mRNA injection, mosaic expression by DNA injection, and the creation of permanent transgenic fish with the UAS- Gal4 system to visualize morphogenetic processes such as neurulation, placode formation and navigation of early commissural axons in the hindbrain. The procedure can be adapted to other photoconvertible and reversible fluorescent molecules, including KikGR and Dronpa; these molecules can be used in combination with two- photon confocal microscopy to specifically highlight cells buried in tissues. The total time needed to carry out the protocol involving transient expression of Kaede by injection of mRNA or DNA, photoconversion and imaging is 2 - 8 d.
  • T Shimizu, T Yabe, O Muraoka, S Yonemura, S Aramaki, K Hatta, YK Bae, H Nojima, M Hibi
    MECHANISMS OF DEVELOPMENT 122(6) 747-763 2005年6月  査読有り
    E-cadherin is a member of the classical cadherin family and is known to be involved in cell-cell adhesion and the adhesion-dependent morphogenesis of various tissues. We isolated a zebrafish mutant (cdh1(rk3)) that has a mutation in the e-cadherin/cdh1 gene. The mutation rk3 is a hypomorphic allele, and the homozygous mutant embryos displayed variable phenotypes in gastrulation and tissue morphogenesis. The most severely affected embryos displayed epiboly delay, decreased convergence and extension movements, and the dissociation of cells from the embryos, resulting in early embryonic lethality. The less severely affected embryos survived through the pharyngula stage and showed flattened anterior neural tissue, abnormal positioning and morphology of the hatching gland, scattered trigeminal ganglia, and aberrant axon bundles from the trigeminal ganglia. Matemal-zygotic cdh1(rk3) embryos displayed epiboly arrest during gastrulation, in which the enveloping layer (EVL) and the yolk syncytial layer but not the deep cells (DC) completed epiboly. A similar phenotype was observed in embryos that received antisense morpholino oligonucleotides (cdh1MO) against E-cadherin, and in zebrafish epiboly mutants. Complementation analysis with the zebrafish epiboly mutant weg suggested that cdh1(rk3) is allelic to half bakedlweg. Immunohistochemistry with an anti-beta-catenin antibody and electron microscopy revealed that adhesion between the DCs and the EVL was mostly disrupted but the adhesion between DCs was relatively unaffected in the MZcdh1(rk3) mutant and cdh1 morphant embryos. These data suggest that E-cadherin-mediated cell adhesion between the DC and EVL plays a role in the epiboly movement in zebrafish. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
  • K. Hatta, N. Ankri, D. S. Faber, H. Korn
    Neuroscience 103(2) 561-579 2001年3月14日  査読有り
    In vivo recordings from Mauthner cells in adult zebrafish (Danio rerio) and goldfish (Carassius auratus) preparations with potassium chloride filled electrodes revealed a new class of long-lasting synaptic events in these cells. Their decay time constant ranged from 20 to 80 ms, which is about 20 times longer than that of previously identified fast glycinergic inhibitory postsynaptic potentials in this neuron. The average time to peak of these slow events ranged from 1 to 6 ms. We demonstrated that they are also inhibitory since (i) they were resistant to antagonists of the excitatory glutamatergic receptors; (ii) their amplitude was increased following chloride loading of the Mauthner cell; (iii) their reversal potential was the same as that of fast, glycinergic inhibitory postsynaptic potentials; and (iv) they produced an inhibitory shunt of the cell's membrane resistance. Furthermore, as with the fast inhibitory postsynaptic potentials, the decay time of the slow events is voltage dependent, increasing when the Mauthner cell is depolarized. However, these inhibitory postsynaptic potentials had a different pharmacological profile to the fast glycinergic ones. That is, they persisted in the presence of strychnine at doses that abolished the fast ones and they were more sensitive to bicuculline. These data are compatible with the notion that these inhibitory postsynaptic potentials are mediated by activation of a different inhibitory receptor type, and may be GABAergic. In addition, the decay time constant of the fast inhibitory postsynaptic current was shorter than the first of the two components that contribute to the bi-exponential decay reported previously for miniature inhibitory postsynaptic currents in Mauthner cells of larval zebrafish. This suggests developmental modifications and/or a switch in the assembly of glycine receptor subtypes. While amplitude distributions of the fast miniature inhibitory postsynaptic potentials recorded in the presence of tetrodotoxin generally could fit with a single Gaussian function, the amplitude histograms of slow miniature events were skewed, often with multiple nearly equally spaced peaks, consistent with the synchronous release of several quantal units. These previously undescribed slow unitary inhibitory postsynaptic potentials contribute to inhibitory synaptic noise recorded in the Mauthner cells. Specifically, autocorrelation analysis revealed gamma-like rhythms (30-80 Hz) in each of two phases, characterized as "noisy" and "quiet", and dominated by the fast and slow inhibitory postsynaptic potentials, respectively. The major frequencies of these two states were significantly different (i.e. around 90 and 40 Hz, respectively), suggesting that the fast and slow inhibitory postsynaptic potentials are derived from different inhibitory networks. Chloride-filled Mauthner cells gradually hyperpolarized in the presence of tetrodotoxin, reflecting the effect of ongoing activity in the interneurons that produce the slow events. We conclude that this new class of inhibitory postsynaptic potentials contributes to the tonic inhibition which controls the Mauthner cell's excitability. In physiological conditions, this regulatory influence is expressed as a continuous shunt of this neuron's input resistance and responsiveness to sensory inputs. © 2001 IBRO.
  • Kohei Hatta, Henri Korn
    Proceedings of the National Academy of Sciences of the United States of America 96(21) 12090-12095 1999年10月12日  査読有り
    Crossed antagonism between activities in neurons subserving alternating movements such as swimming or walking has been described in a number of systems. The role of reciprocal inhibition has been implicated in these activities, but involvement of rhythmic ongoing fluctuations of membrane potential, called synaptic 'noise,' has not been examined. In the Mauthner (M) cells, which control the direction of escape, this activity is inhibitory. We report that in the zebrafish (Danio rerio), inhibitory synaptic noise exhibits prolonged bursts of rhythmic, inhibitory postsynaptic potentials. Which attenuate the M cell's sensibility to excitatory sensory drives. Furthermore, paired intracellular recordings have shown that inhibitory synaptic noise alternates between two distinct states, noisy and quiet, which are out of phase in the two cells. Firing of either M cell resets this pattern by reducing the inhibition in the contralateral one. This suggests that an avoidance reflex in one direction may favor initiation, by the opposite M cell, of a subsequent escape toward a more appropriate location.
  • Kohei Hatta, Henri Korn
    Journal of Comparative Neurology 395(4) 493-509 1998年6月15日  査読有り
    We investigated the morphological and electrophysiological properties of the Mauthner (M-) cell and its networks in the adult zebrafish (Danio rerio) in comparison with those in the goldfish (Carassius auratus). The zebrafish M-cell has an axon cap, a high resistivity structure which surrounds the initial segment of the M-axon, and accounts for an unusual amplification of the fields generated within and around it. Second, extra- and intracellular recordings were performed with microelectrodes. The resting potential was ~- 80 mV with an input resistance of ~0.42 MΩ. The M-cell extracellular field was large (10-20 mV), close to the axon hillock, and the latency of antidromic spikes short (~0.4 milliseconds), confirming a high conduction velocity in the M-axon. The extrinsic hyperpolarizing potential (EHP), which signals firing of presynaptic cells and collateral inhibition, was markedly lower at frequencies of spinal stimulation > ~5/second, suggesting an organization of the recurrent collateral network similar to that in the goldfish. Inhibitory postsynaptic potentials (IPSPs) were highly voltage- dependent; their decay time constant was increased by depolarizations. The presynaptic neurons which are numerous could be identified by their passive hyperpolarizing potential (PHP) produced by the M-spike current. Auditory responses, mediated via mixed synapses (electrical and chemical), had short delays and hence are well suited to trigger the escape reaction. The similarities of their properties indicate that the wealth of information generated over decades in the goldfish can be extrapolated to the zebrafish.
  • Marnie E. Halpern, Kohei Hatta, Sharon L. Amacher, William S. Talbot, Yi Lin Yan, Bernard Thisse, Christine Thisse, John H. Postlethwait, Charles B. Kimmel
    Developmental Biology 187(2) 154-170 1997年7月15日  査読有り
    Mutational analyses have shown that the genes no tail (nt1, Brachyury homolog), floating head (flh, a Not homeobox gene), and cyclops (cyc) play direct and essential roles in the development of midline structures in the zebrafish. In both nt1 and flh mutants a notochord does not develop, and in cyc mutants the floor plate is nearly entirely missing. We made double mutants to learn how these genes might interact. Midline development is disrupted to a greater extent in cyc;flh double mutants than in either cyc or flh single mutants; their effects appear additive. Both the notochord and floor plate are completely lacking, and other phenotypic disturbances suggest that midline signaling functions are severely reduced. On the other hand, trunk midline defects in flh;nt1 double mutants are not additive, but are most often similar to those in nt1 single mutants. This finding reveals that loss of nt1 function can suppress phenotypic defects due to mutation at flh, and we interpret it to mean that the wild-type allele of nt1 (nt1+) functions upstream to flh in a regulatory hierarchy. Loss of function of nt1 also strongly suppresses the floor plate deficiency in cyc mutants, for we found trunk floor plate to be present in cyc;nt1 double mutants. From these findings we propose that nt1+ plays an early role in cell fate choice at the dorsal midline, mediated by the Nt1 protein acting to antagonize floor plate development as well as to promote notochord development.
  • Christine E. Beattie, Kohei Hatta, Marnie E. Halpern, Hongbo Liu, Judith S. Eisen, Charles B. Kimmel
    Developmental Biology 187(2) 171-182 1997年7月15日  査読有り
    In zebrafish there are two populations of motoneurons, primary and secondary, that are temporally separate in their development. To determine if midline cells play a role in the specification of these neurons, we analyzed both secondary and primary motoneurons in mutants lacking floor plate, notochord, or both floor plate and notochord. Our data show that the specification of secondary motoneurons, those most similar to motoneurons in birds and mammals, depends on the presence of either a differentiated floor plate or notochord. In the absence of both of these structures, secondary motoneurons fail to form. In contrast, primary motoneurons, early developing motoneurons found in fish and amphibians, can develop in the absence of both floor plate and notochord. A spatial correspondence is found between secondary motoneurons and sonic hedgehog-expressing floor plate and notochord. In contrast, primary motoneuronal specification depends on the presence of sonic hedgehog in gastrula axial mesoderm, the tissue that will give rise to the notochord. These results suggest that both primary and secondary motoneurons are specified by signals from midline tissues, but at very different stages of embryonic development.
  • Kohei Hatta, Yoshiko Takahashi
    Developmental Dynamics 205(2) 183-195 1996年2月  査読有り
    To investigate the inductive activities of the vertebrate organizer, we transplanted the chicken organizer (Hensen's node) into zebrafish gastrula and analyzed resulting secondary axes. Grafted Hensen's node did not differentiate or participate in the secondary axis. It also did not induce a secondary notochord or expression of the genes normally expressed by the fish organizer including no tail, axial, goosecoid. Nevertheless, it recruited fish cells to organize a variety of tissues: the dorsal portion of the central nervous system including Rohon-Beard sensory neurons, otic vesicles, dorsal pigment stripe, dorsal fin, somites, heart, and pronephric ducts. Enlarged neural plate induced by the organizer was shown by the expression pattern of dlx3 and msxB genes, which demarcates the early presumptive neural tissue. In addition, Hensen's node of an earlier stage chicken embryo displayed differential movement in zebrafish from that of a later stage. This might reflect unknown differences in properties between the organizer at two different developmental stages related to its normal organizer activity. To create a model system to study the molecular mechanisms of the organizer, we next transplanted genetically modified mouse cells into zebrafish embryos. We found that Wnt3A-transfected NIH3T3 cells are much more potent in inducing a secondary axis than NIH3T3 cells alone. These results suggest that formation of a variety of tissues are controlled by signalling from the organizer itself with no requirement of participation of the organizer-derived tissues. Additionally, the activities of the organizer may involve a function of Wnt- family genes.
  • Yi‐Lin ‐L Yan, Kohei Hatta, Bob Riggleman, John H. Postlethwait
    Developmental Dynamics 203(3) 363-376 1995年7月  査読有り
    To understand the hierarchy of developmental controls underlying axis specification in vertebrate embryos, it is helpful to identify relationships between regulatory molecules and the genes that given axial cells their differentiated phenotypes. This work reports the cloning and expression pattern of one of these differentiation genes, a type II collagen (col2a1) gene from the zebrafish Danio rerio. Along th8e embryonic axis, col2a1 is expressed dynamically in three rows that are each a single cell wide: the notochord and the rows of cells immediately dorsal and ventral to it—the floor plate of the central nervous system, and the hypochord. In addition, col2a1 is expressed in the pharyngeal arches, the epithelium of the otic capsule, and in the mesenchyme of the neurocranium. Experiments probed the expression pattern of col2a1 relative to that of known or potential regulators of axis development, including axial, sonic hedgehog, twist, and cyclops. The results showed that the spatial and temporal pattern of col2a1 expression in axial mesoderm follows the expression of twist closer than other genes tested. In cyclops embryos, which lack an intact floor plate, col2a1 expression was usually low, but not missing in cells in the ventral spinal cord. Because col2a1 expression reveals abnormalities in the notochord of cyclopsb16 embryos, and less col2a1‐expressing mesenchyme accumulates rostral to the notochord in cyclops embryos, the effects of the cyclopsb16 mutation are not confined to the central nervous system. ©1995 Wiley‐Liss, Inc. Copyright © 1995 Wiley‐Liss, Inc.
  • Kohei Hatta, Andreas W. Püschel, Charles B. Kimmel
    Proceedings of the National Academy of Sciences of the United States of America 91(6) 2061-2065 1994年3月15日  査読有り
    In all vertebrates the brain develops from the enlarged anterior part of the neural plate. However, in the zebrafish mutant cyclops, the girth of the central nervous system (CNS) is nearly uniform along its length. Changes in expression patterns of homeobox genes and neuronal markers reveal a massive deletion of the ventral forebrain, particularly the diencephalon, as well as its precursor region in the neural plate. The deletion is due to a nonautonomous action of the mutation: very few wild-type cells transplanted to the midline of a mutant embryo can rescue the forebrain phenotype, including cyclopia. Establishment of forebrain ventral positional coordinates may thus require inductive signaling by forebrain midline cells whose specification depends upon the cyclops gene product.
  • Akihiro Inoue, Mika Takahashi, Kohei Hatta, Yoshiki Hotta, Hitoshi Okamoto
    Developmental Dynamics 199(1) 1-11 1994年1月  査読有り
    Islet‐1 (Isl‐1) is a LIM domain/homeodomain‐type transcription regulator that has been originally identified as an insulin gene enhancer binding protein. Isl‐1 is also expressed by subsets of neurons in the central nervous system of rat and chick embryos. We have cloned the Isl‐1 cDNA from zebrafish and examined its expression pattern using in situ hybridization to whole‐mount embryos. Isl‐1 mRNA first appears immediately after gastrulation in the polster, the cranial ganglia, and in Rohon‐Beard neurons and ventromedial cells of the spinal cord. The expression by the ventromedial cells is segmentally repeated and becomes restricted to the one or two cells slightly anterior to the segment borders. Double staining by in situ hybridization and an antibody which stains most axons suggested that these segmentally distributed cells may be either the rostral primary motoneuron (RoP) or middle primary motoneuron (MiP). This raises a possibility that Isl‐1 may be involved during determination of subtype identities of the primary motoneurons. Furthermore, the specific Isl‐1 mRNA expression in the spinal cord is under the control of the somites, since mutant embryo with defective somite failed to maintain this pattern. © 1994 Wiley‐Liss, Inc. Copyright © 1994 Wiley‐Liss, Inc.
  • Kohei Hatta
    Neuron 9(4) 629-642 1992年10月  査読有り
    To determine the role of the floor plate (FP) in CNS development, I have used labeling techniques, including immunolabeling, to analyze cyclops mutant embryos, which lack the FP. Except for the anterior brain, the mutant phenotype is almost exclusively confined to the vicinity of the ventral CNS midline. In the midbrain, the number of ventral neurons is reduced and cell patterning is disturbed. In contrast, the neuronal arrangement in the spinal cord is almost normal, including in particular both primary and secondary motoneurons. Longitudinal axonal bundles are disorganized in both the brain and spinal cord. Laser ablating the FP in wild-type embryos locally phenocopies cyclops axonal disturbances, and transplanting wild-type FP precursor cells into mutants locally rescues the disturbances. These results demonstrate a significant role for the FP in pathfinding and fasciculation by axons in situ, especially during their longitudinal courses. © 1992.
  • Charles B. Kimmel, Thomas F. Schilling, Kohei Hatta
    Current Topics in Developmental Biology 25(C) 77-110 1991年1月1日  査読有り
    This chapter discusses the patterning of body segments of the zebrafish embryo. Descriptive studies in zebrafish have provided exceptionally clear information, often at the level of individual cells, about the structure, extent in the body, and development of the segments. Experimental analyses, including the use of mutations, reveal cellular interactions required for segmentation. Information from zebrafish provides a useful background for understanding how genes make vertebrate segments, an issue for the future, and for which this species also holds some promise. The developmental studies of zebrafish strengthen the notion that vertebrates seem to be metameric creatures. Attempts to dispel this notion in the past have pointed up the limited extent of vertebrate body segmentation. Segmentation does indeed seem to be limited, but it is even limited in annelids that are certainly segmented animals and that show no hint of segmental organization in lineages that produce the gut or the skin, organs that also appear unsegmented in vertebrates. Accordingly, the presence of nonsegmented tissues within a segmented body plan does not seem particularly problematic for the common segmented ancestor hypothesis; a most interesting question for both development and evolution is how the apparently unsegmented axial sets of cells, the notochord and the floor plate, come to be insinuated into the metameres. These axial tissues have dominant developmental roles and certainly have also been extremely important in chordate evolution. © 1991 Academic Press, Inc.
  • Kohei Hatta, Charles B. Kimmel, Robert K. Ho, Charline Walker
    Nature 350(6316) 339-341 1991年  査読有り
    THE floor plate is a set of epithelial cells present in the ventral midline of the neural tube in vertebrates1 that seems to have an important role in the developmental patterning2 of central nervous system fibre pathways3,4, and arrangements of specific neurons5. The floor plate arises from dorsal ectodermal cells closely associated with the mesoderm that forms notochord6, and it may depend on interactions from the notochord for its specification. To learn the nature of these interactions we have analysed mutations in zebrafish (Brachydanio rerio). We report here that in wild-type embryos the floor plate develops as a simply organized single cell row, but that its development fails in embryos bearing the newly discovered zygotic lethal 'cyclops' mutation, cyc-1(b16). Mosaic analysis establishes that cyc-1 blocks floor plate development autonomously and reveals the presence of homeogenetic induction between floor plate cells. © 1991 Nature Publishing Group.
  • K. Hatta, R. Bremiller, M. Westerfield, C. B. Kimmel
    Development 112(3) 821-832 1991年  査読有り
  • C. B. Kimmel, K. Hatta, J. S. Eisen
    Development 113(SUPPL. 2) 47-57 1991年  査読有り
  • Seiji Miyatani, Kenji Shimamura, Masayuki Hatta, Akira Nagafuchi, Akinao Nose, Mayumi Matsunaga, Kohei Hatta, Masatoshi Takeichi
    Science 245(4918) 631-635 1989年  査読有り
    Cadherins are a family of Ca2+-dependent intercellular adhesion molecules. Complementary DNAs encoding mouse neural Cadherin (N-cadherin) were cloned, and the cell binding specificity of this molecule was examined. Mouse N-cadherin shows 92 percent similarity in amino acid sequence to the chicken homolog, while it shows 49 percent and 43 percent similarity to epithelial Cadherin and to placental Cadherin of the same species, respectively. In cell binding assays, mouse N-cadherin did not cross-react with other mouse Cadherins, but it did cross-react with chicken N-cadherin. The results indicate that each Cadherin type confers distinct adhesive specificities on different cells, and also that the specificity of N-cadherin is conserved between mammalian and avian cells.
  • Masatoshi Takeichi, Kohei Hatta, Akinao Nose, Akira Nagafuchi
    Cell Differentiation and Development 25(SUPPL.) 91-94 1988年11月  査読有り
    Cadherins are a group of functionally related glycoproteins responsible for the Ca2+-dependent cell-cell adhesion mechanism. They are divided into subclasses, such as E-, P- and N-cadherin, which are distinct in immunological specificities and tissue distribution. Cell aggregation experiments suggest that these molecules have subclass specificities in cell-cell binding and are involved in selective cell adhesions. Analysis of amino acid sequences deduced from the nucleotide sequences of cDNAs encoding cadherins demonstrated that they are integral membrane proteins and share common sequences throughout their entire length; average similarity in the sequences among them is in a range of 50-60%. This result provided evidence that cadherins constitute a gene family which encodes adhesion molecules with different specificities. We also showed that, when cells with little cadherin activity were transfected with cadherin cDNAs, they acquired the cadherin-mediated adhesion properties. © 1988.
  • Mayumi Matsunaga, Kohei Hatta, Masatoshi Takeichi
    Neuron 1(4) 289-295 1988年6月  査読有り
    We investigated the role of N-cadherin cell adhesion molecules in the histogenesis of the chicken neural retina. In the undifferentiated retina of early embryos, N-cadherin is almost evenly distributed. With differentiation, N-cadherin was gradually localized in particular cell layers. In the 8.5 to 10.5 day embryos, N-cadherin was most abundant in the optic nerve fiber layer, the plexiform layers and the outer limiting membrane. Thereafter, this molecule gradually diminished from most parts of the retina, except in the outer limiting membrane. When incubated with Fab fragments of a polyclonal antibody to N-cadherin, retinas of early embryos tended to dissociate and could not be maintained as a tissue mass. Retinas from older embryos were not dissociated by the Fab, but their morphogenesis was severely affected. We conclude that N-cadherin is essential for maintaining the overall structure of the undifferentiated retina, but during development, its role becomes restricted to maintaining more specific regions of the tissue. We also suggest that there might be additional, unidentified cadherin-like molecules in the retina. © 1988.
  • K. Hatta, A. Nose, A. Nagafuchi, M. Takeichi
    Journal of Cell Biology 106(3) 873-881 1988年  査読有り
    The neural cadherin (N-cadherin) is a Ca2+-dependent cell-cell adhesion molecule detected in neural tissues as well as in non-neural tissues. We report here the nucleotide sequence of the chicken N-cadherin cDNA and the deduced amino acid sequence. The sequence data suggest that N-cadherin has one transmembrane domain which divides the molecule into an extracellular and a cytoplasmic domain; the extracellular domain contains internal repeats of characteristic sequences. When the N-cadherin cDNA connected with virus promoters was transfected into L cells which have no endogenous N-cadherin, the transformants acquired the N-cadherin-mediated aggregating property, indicating that the cloned cDNA contained all information necessary for the cell-cell binding action of this molecule. We then compared the primary structure of N-cadherin with that of other molecules defined as cadherin subclasses. The results showed that these molecules contain common amino acid sequences throughout their entire length, which confirms our hypothesis that cadherins make a gene family.
  • Mayumi Matsunaga, Kohei Hatta, Akira Nagafuchi, Masatoshi Takeichi
    Nature 334(6177) 62-64 1988年  査読有り
    The dendritic branches (neurites) of developing neurons migrate along specific pathways to reach their targets. It has been suggested that this migration is guided by factors present on the surface of other neurons or glial cells1,2. The molecular nature of such factors, however, remains to be elucidated. N-cadherin is a cell-surface glycoprotein which belongs to the cadherin family of cell-cell adhesion molecules3. This adhesion molecule is expressed in various neuronal cells as well as in glial cells of the central and peripheral nervous systems in vertebrate embryos4-6 and recent immunological studies suggested that N-cadherin may play a role in guiding the migration of neurites on myotubes or astrocytes7,8. To further examine this possibility, we used a molecular-genetic approach; that is, we examined the outgrowth of chicken embryonic optic axons on monolayer cultures of Neuro 2a or L cells transfected with the complementary DNA encoding chicken N-cadherin. The data indicate that N-cadherin is used as a guide molecule for the migration of optic axons on cell surfaces. © 1988 Nature Publishing Group.
  • Kohei Hatta, Shin Takagi, Hajime Fujisawa, Masatoshi Takeichi
    Developmental Biology 120(1) 215-227 1987年3月  査読有り
    N-cadherin is a Ca2+-dependent cell-cell adhesion molecule, which was identified in brain cells of mouse and chicken. In the present study, we have determined the pattern of expression of N-cadherin in chicken embryos at various stages by means of immunohistochemistry. N-cadherin was expressed in cells derived from all three primary germ layers. Its expression was transient in many tissues but permanent in others. The transient expression occurred in nephric tubules, skeletal muscles, mesenchymal tissues, endodermal organs, and epidermis, while the permanent expression occurred in nervous systems, lens, and myocardiac cells. Appearance or disappearance of N-cadherin could be generally correlated with morphogenetic events, such as rearrangement, segregation, or association of cells. Comparison of the expression pattern of N-cadherin with that of L-CAM and N-CAM determined by other workers suggests that there is some mechanism controlling expression of multiple classes of adhesion molecules. The pattern of expression of N-cadherin was generally complementary to that of L-CAM; that is, if N-cadherin appeared, L-CAM disappeared or vice versa. We also found cases in which N-cadherin was expressed in the same local regions as L-CAM. The distribution of N-cadherin was similar to that of N-CAM with some exceptions. Thus, N-cadherin and other cell-cell adhesion molecules seem to be expressed under a precise spatial and temporal control so as to be associated with a variety of morphogenetic events during development. © 1987.
  • S. Hirano, a. Nose, K. Hatta, A. Kawakami, M. Takeichi
    Journal of Cell Biology 105(6 I) 2501-2510 1987年  査読有り
    Cadherins are a family of cell-cell adhesion molecules and are divided into subclasses with distinct adhesive specificities and tissue distribution. Here we examined the distribution of cadherins at contact sites between cells expressing the same or different cadherin subclasses. Each cadherin was concentrated at the boundary between cells expressing an identical cadherin subclass, irrespective of the cell types connected. However, such localization decreased or disappeared at the boundary between cells containing different cadherin subclasses. We also found that the localization of cadherins precisely coincided with that of actin bundles; both were detected at the apical region of cell sheets. This co-localization was retained even after cells were either treated with cytochalasin D or extracted with the detergent NP40. These results suggest that each cadherin subclass preferentially interacts with its own molecular type at intercellular boundaries, and that cadherin molecules may be associated with actin-based cytoskeletal elements.
  • J. L. Duband, S. Dufour, K. Hatta, M. Takeichi, G. M. Edelman, J. P. Thiery
    Journal of Cell Biology 104(5) 1361-1374 1987年  査読有り
    In avian embryos, somites constitute the morphological unit of the metameric pattern. Somites are epithelia formed from a mesenchyme, the segmental plate, and are subsequently reorganized into dermatome, myotome, and sclerotome. In this study, we used somitogenesis as a basis to examine tissue remodeling during early vertebrate morphogenesis. Particular emphasis was put on the distribution and possible complementary roles of adhesion-promoting molecules, neural cell adhesion molecule (N-CAM), N-cadherin, fibronectin, and laminin. Both segmental plate and somitic cells exhibited in vitro calcium-dependent and calcium-independent systems of cell aggregation that could be inhibited respectively by anti-N-cadherin and anti-N-CAM antibodies. In vivo, the spatio-temporal expression of N-cadherin was closely associated with both the formation and local disruption of the somites. In contrast, changes in the prevalence of N-CAM did not strictly accompany the remodeling of the somitic epithelium into dermamyotome and sclerotome. It was also observed that fibronectin and laminin were reorganized secondarily in the extracellular spaces after CAM-mediated contacts were modulated. In an in vitro culture system of somites, N-cadherin was lost on individual cells released from somite explants and was reexpressed when these cells reached confluence and established intercellular contacts. In an assay of tissue dissociation in vitro, antibodies to N-cadherin or medium devoid of calcium strongly and reversibly dissociated explants of segmental plates and somites. Antibodies to N-CAM exhibited a smaller disrupting effect only on segmental plate explants. In contrast, antibodies to fibronectin and laminin did not perturb the cohesion of cells within the explants. These results emphasize the possible role of cell surface modulation of CAMs during the formation and remodeling of some transient embryonic epithelia. It is suggested that N-cadherin plays a major role in the control of tissue remodeling, a process in which N-CAM is also involved but to a lesser extent. The substratum adhesion molecules, fibronectin and laminin, do not appear to play a primary role in the regulation of these processes but may participate in cell positioning and in the stabilization of the epithelial structures.
  • Y. Shirayoshi, K. Hatta, M. Hosoda, S. Tsunasawa, F. Sakiyama, M. Takeichi
    The EMBO journal 5(10) 2485-2488 1986年10月  査読有り
    Ca2+-dependent cell--cell adhesion molecules, termed cadherins, are divided into subclasses with distinct tissue distributions and distinct cell-binding specificities. To elucidate the biochemical relationship of these subclasses, we compared the pattern of tryptic cleavage and the partial amino acid sequence of mouse liver E-cadherin with those of chicken brain N-cadherin. Although these two cadherins are distinct in their cell-binding and immunological specificities, they showed an identical mol. wt and a similar tryptic cleavage pattern. We isolated tryptic fragments of E- and N-cadherin, and determined the sequences of nine amino acid residues of their amino terminus. The results showed that sequences of amino acids from the amino terminus to the 7th residues are identical in these two cadherins. We thus suggest that cadherins with distinct specificities have a common genic origin.
  • M. Takeichi, Y. Shirayoshi, K. Hatta, A. Nose
    Progress in clinical and biological research 217 B 17-27 1986年  査読有り
  • Kohei Hatta, Masatoshi Takeichi
    Nature 320(6061) 447-449 1986年  査読有り
    Selective adhesive properties of cells are thought to have a key role in animal morphogenesis1, but the molecular bases underlying these properties remain to be determined. Our studies have demonstrated that cell-type-specific adhesiveness resides in a class of cell-cell adhesion molecules, termed cadherins, which were defined as the molecular components of the Ca2+-dependent cell adhesion system (CADS)2,3. For example, a cadherin molecule identified in mouse teratocarcinoma cells, termed E-cadherin (this molecule seems to be identical to uvomorulin4 or cell-CAM 120/80 (ref. 5) and equivalent to chicken L-CAM6), was detected only in epithelial cells of various organs2,3; it did not cross-react with cadherins on other cell types7,8. We recently described a novel type of cadherin, N-cadherin, which is found in mouse cells and whose tissue distribution is distinct from that of E-cadherin3. In the present study, we have identified a molecular component of N-cadherin in the chicken and determined its distribution in the tissues of early embryos. The results suggest that expression of this adhesion molecule is associated with separation and sealing of cell layers in morphogenesis. © 1986 Nature Publishing Group.
  • K. Hatta, T. S. Okada, M. Takeichi
    Proceedings of the National Academy of Sciences of the United States of America 82(9) 2789-2793 1985年  査読有り
    The Ca2+-dependent cell-cell adhesion system (CDS) is thought to be essential for the formation and maintenance of cell adhesion in a wide variety of tissues. Previous studies suggested that CDS has some cell-type specificity; for example, the monoclonal antibody ECCD-1 selectively recognizes CDS of certain epithelial tissues in mouse embryos but not nervous tissues. In the present study, we have obtained a monoclonal antibody, designated NCD-1, that disrupts connections between brain cells of mouse embryos. A series of experiments suggested that NCD-1 specifically recognizes CDS. We then determined the distribution of the NCD-1 antigen in various mouse tissues. NCD-1 reacted with cells of the following tissues and cell lines: nervous tissues from various sources, lens, striated muscle, cardiac muscle, glioma G26-20, adrenocortical tumor Y1, and melanoma B16. None of these cells reacted with ECCD-1, and the cells reactive with ECCD-1 did not react with NCD-1. There was also a class of cells that did not react with either ECCD-1 or NCD-1. These results suggest that cells in the body can be classified into at least three groups containing CDS of differing specificities. A map of the tissue localization of these different classes of CDS also suggests that the expression of cell-type-specific cell adhesion molecules in each tissue plays a crucial role in adhesion between the same cell types and segregation of different cell types in processes essential for animal morphogenesis.

MISC

 21

書籍等出版物

 8

講演・口頭発表等

 9

共同研究・競争的資金等の研究課題

 8

社会貢献活動

 1