研究者業績

餅井 真

モチイ マコト  (Makoto Mochii)

基本情報

所属
兵庫県立大学 大学院 理学研究科 準教授
学位
理学博士(名古屋大学)

J-GLOBAL ID
200901023000794838
researchmap会員ID
1000144622

研究キーワード

 2

論文

 30
  • Makoto Mochii, Kai Akizuki, Hero Ossaka, Norie Kagawa, Yoshihiko Umesono, Ken-Ichi T Suzuki
    Developmental biology 506 42-51 2023年12月3日  査読有り筆頭著者責任著者
    Xenopus laevis is a widely used model organism in developmental and regeneration studies. Despite several reports regarding targeted integration techniques in Xenopus, there is still room for improvement of them, especially in creating reporter lines that rely on endogenous regulatory enhancers/promoters. We developed a CRISPR-Cas9-based simple method to efficiently introduce a fluorescent protein gene into 5' untranslated regions (5'UTRs) of target genes in Xenopus laevis. A donor plasmid DNA encoding an enhanced green fluorescent protein (eGFP) flanked by a genomic fragment ranging from 66 bp to 878 bp including target 5'UTR was co-injected into fertilized eggs with a single guide RNA and Cas9 protein. Injections for krt12.2.L, myod1.S, sox2.L or brevican.S resulted in embryos expressing eGFP fluorescence in a tissue-specific manner, recapitulating endogenous expression of target genes. Integrations of the donor DNA into the target regions were examined by genotyping PCR for the eGFP-expressing embryos. The rate of embryos expressing the specific eGFP varied from 2.1% to 13.2% depending on the target locus and length of the genomic fragment in the donor plasmids. Germline transmission of an integrated DNA was observed. This simple method provides a powerful tool for exploring gene expression and function in developmental and regeneration research in X. laevis.
  • Yuki Shibata, Akinori Okumura, Makoto Mochii, Ken-ichi T. Suzuki
    STAR Protocols 4(3) 102382-102382 2023年9月  査読有り
  • Yuki Shibata, Miyuki Suzuki, Nao Hirose, Ayuko Takayama, Chiaki Sanbo, Takeshi Inoue, Yoshihiko Umesono, Kiyokazu Agata, Naoto Ueno, Ken-ichi T. Suzuki, Makoto Mochii
    Developmental Biology 2022年6月  査読有り最終著者責任著者
  • Okumura A, Hayashi T, Ebisawa M, Yoshimura M, Sasagawa Y, Nikaido I, Umesono Y, Mochii M
    Development, growth & differentiation 61(9) 447-456 2019年12月  査読有り最終著者責任著者
  • Kazutaka Hosoda, Minako Motoishi, Takuya Kunimoto, Osamu Nishimura, Byulnim Hwang, Sumire Kobayashi, Shigenobu Yazawa, Makoto Mochii, Kiyokazu Agata, Yoshihiko Umesono
    Development, growth & differentiation 60(6) 341-353 2018年8月  査読有り
    Planarians have established a unique body pattern along the anterior-posterior (AP) axis, which consists of at least four distinct body regions arranged in an anterior to posterior sequence: head, prepharyngeal, pharyngeal (containing a pharynx), and tail regions, and possess high regenerative ability. How they reconstruct the regional continuity in a head-to-tail sequence after amputation still remains unknown. We use as a model planarian Dugesia japonica head regeneration from tail fragments, which involves dynamic rearrangement of the body regionality of preexisting tail tissues along the AP axis, and show here that RNA interference of the gene D. japonica mek kinase 1 (Djmekk1) caused a significant anterior shift in the position of pharynx regeneration at the expense of the prepharyngeal region, while keeping the head region relatively constant in size, and accordingly led to development of a relatively longer tail region. Our data suggest that DjMEKK1 regulates anterior extracellular signal-regulated kinase (ERK) and posterior β-catenin signaling pathways in a positive and negative manner, respectively, to establish a proper balance resulting in the regeneration of planarian's scale-invariant trunk-to-tail patterns across individuals. Furthermore, we demonstrated that DjMEKK1 negatively modulates planarian β-catenin activity via its serine/threonine kinase domain, but not its PHD/RING finger domain, by testing secondary axis formation in Xenopus embryos. The data suggest that Djmekk1 plays an instructive role in the coordination between the establishment of the prepharyngeal region and posteriorizing of pharynx formation by balancing the two opposing morphogenetic signals along the AP axis during planarian regeneration.
  • Kentaro Sato, Yoshihiko Umesono, Makoto Mochii
    Developmental Biology 433(2) 404-415 2018年1月15日  査読有り最終著者責任著者
    Rapid wound healing and subsequent formation of the apical epithelial cap (AEC) are believed to be required for successful appendage regeneration in amphibians. Despite the significant role of AEC in limb regeneration, its role in tail regeneration and the mechanisms that regulate the wound healing and AEC formation are not well understood. We previously identified Xenopus laevis es1, which is preferentially expressed in wounded regions, including the AEC after tail regeneration. In this study we established and characterized transgenic Xenopus laevis lines harboring the enhanced green fluorescent protein (EGFP) gene under control of an es1 gene regulatory sequence (es1:egfp). The EGFP reporter expression was clearly seen in several regions of the embryo and then declined to an undetectable level in larvae, recapitulating the endogenous es1 expression. After amputation of the tadpole tail, EGFP expression was re-activated at the edge of the stump epidermis and then increased in the wound epidermis (WE) covering the amputation surface. As the stump started to regenerate, the EGFP expression became restricted to the most distal epidermal region, including the AEC. EGFP was preferentially expressed in the basal or deep cells but not in the superficial cells of the WE and AEC. We performed a small-scale pharmacological screening for chemicals that affected the expression of EGFP in the stump epidermis after tail amputation. The EGFP expression was attenuated by treatment with an inhibitor for ERK, TGF-β or reactive oxygen species (ROS) signaling. These treatments also impaired wound closure of the amputation surface, suggesting that the three signaling activities are required for es1 expression in the WE and successful wound healing after tail amputation. These findings showed that es1:egfp Xenopus laevis should be a useful tool to analyze molecular mechanisms regulating wound healing and appendage regeneration.
  • Yuka Taniguchi, Kenji Watanabe, Makoto Mochii
    BMC DEVELOPMENTAL BIOLOGY 14 27 2014年6月  査読有り最終著者責任著者
    Background: Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results: In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion: As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.
  • Kohei Terayama, Kensuke Kataoka, Keisuke Morichika, Hidefumi Orii, Kenji Watanabe, Makoto Mochii
    DEVELOPMENT GROWTH & DIFFERENTIATION 55(2) 217-228 2013年2月  査読有り
    Primordial germ cells (PGCs) arise in the early embryo and migrate toward the future gonad through species-specific pathways. They are assumed to change their migration properties dependent on their own genetic program and/or environmental cues, though information concerning the developmental change in PGC motility is limited. First, we re-examined the distribution of PGCs in the endodermal region of Xenopus embryos at various stages by using an antibody against Xenopus Daz-like protein, and found four stages of migration, namely clustering, dispersing, directionally migrating and re-aggregating. Next, we isolated living PGCs at each stage and directly examined their morphology and locomotive activity in cell cultures. PGCs at the clustering stage were round in shape with small blebs and showed little motility. PGCs in both the dispersing and the directionally migrating stages alternated between the locomotive phase with an elongated morphology and the pausing phase with a rugged morphology. The locomotive activity of the elongated PGCs was accompanied by the persistent formation of a large bleb at the leading front. The duration of the locomotive phase was shortened gradually with the transition from the dispersing stage to the directionally migrating stage. At the re-aggregating stage, PGCs became round in shape and showed no motility. Thus, we directly showed that the locomotive activity of PGCs changes dynamically depending upon the migrating stage. We also showed that the locomotion and blebbing of the PGCs required F-actin, myosin II activity and RhoA/Rho-associated protein kinase (ROCK) signaling.
  • Haru Tada, Makoto Mochii, Hidefumi Orii, Kenji Watanabe
    DEVELOPMENTAL BIOLOGY 371(1) 86-93 2012年11月  査読有り
    In many animals, the germ line is specified by a distinct cytoplasmic structure called germ plasm (GP). GP is necessary for primordial germ cell (PGC) formation in anuran amphibians including Xenopus. However, it is unclear whether GP is a direct germ cell determinant in vertebrates. Here we demonstrate that GP acts autonomously for germ cell formation in Xenopus. EGFP-labeled GP from the vegetal pole was transplanted into animal hemisphere of recipient embryos. Cells carrying transplanted GP (T-GP) at the ectopic position showed characteristics similar to the endogenous normal PGCs in subcellular distribution of GP and presence of germ plasm specific molecules. However, T-GP-carrying-cells in the ectopic tissue did not migrate towards the genital ridge. T-GP-carrying cells from gastrula or tailbud embryos were transferred into the endoderm of wild-type hosts. From there, they migrated into the developing gonad. To clarify whether ectopic T-GP-carrying cells can produce functional germ cells, they were identified by changing the recipients, from the wildtype Xenopus to transgenic Xenopus expressing DsRed2. After transferring T-GP carrying cells labeled genetically with DsRed2 into wild-type hosts, we could find chimeric gonads in mature hosts. Furthermore, the spermatozoa and eggs derived from T-GP-carrying cells were fertile. Thus, we have demonstrated that Xenopus germ plasm is sufficient for germ cell determination. (C) 2012 Elsevier Inc. All rights reserved.
  • Ayaka Taguchi, Miki Takii, Minako Motoishi, Hidefumi Orii, Makoto Mochii, Kenji Watanabe
    DEVELOPMENT GROWTH & DIFFERENTIATION 54(8) 767-776 2012年10月  査読有り
    Germ plasm is found in germ-line cells of Xenopus and thought to include the determinant of primordial germ cells (PGCs). As mitochondria is abundant in germ plasm, vital staining of mitochondria was used to analyze the movement and function of germ plasm; however, its application was limited in early cleavage embryos. We made transgenic Xenopus, harboring enhanced green fluorescent protein (EGFP) fused to the mitochondria transport signal (Dria-line). Germ plasm with EGFP-labeled mitochondria was clearly distinguishable from the other cytoplasm, and retained mostly during one generation of germ-line cells in Dria-line females. Using the Dria-line, we show that germ plasm is reorganized from near the cell membrane to the perinuclear space at St. 9, dependent on the microtubule system.
  • Masaki Takechi, Masaki Takeuchi, Kinya G. Ota, Osamu Nishimura, Makoto Mochii, Kazu Itomi, Noritaka Adachi, Maiko Takahashi, Satoko Fujimoto, Hiroshi Tarui, Masataka Okabe, Shinichi Aizawa, Shigeru Kuratani
    JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 316B(7) 526-546 2011年11月  査読有り
    Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule.'' The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database. J. Exp. Zool. (Mol. Dev. Evol.) 316:526-546, 2011. (C) 2011 Wiley Periodicals, Inc.
  • Shunsuke Yoshii, Masahiro Yamaguchi, Yuichiro Oogata, Akira Tazaki, Makoto Mochii, Shintaro Suzuki, Tsutomu Kinoshita
    ZOOLOGICAL SCIENCE 28(11) 809-816 2011年11月  査読有り
    The epidermis serves as a barrier protecting organs and tissues from the environment, and comprises many types of cells. A cell renewal system is established in epidermis: old epithelial cells are replaced by newly differentiated cells, which are derived from epidermal stem cells located near basement membrane. In order to examine the mechanism of epidermal development, we isolated a novel gene expressed in Xenopus epidermis and named the gene Xenopus polka dots (Xpod) from its polka dot-like expression pattern throughout larval periods. Several immunohistochemical examinations showed that the Xpod-expressing cell type is neither p63-positive epidermal stem cells, nor the alpha-tubulin-positive ciliated cells, but a subset of the foxi1e-positive ionocytes. The forced gene expression of foxi1e caused the suppression of Xpod expression, while Xpod showed no effect on foxi1e expression. In a comparison of several osmotic conditions, we found that hypertonic culture caused the increase in number of the Xpod-expressing cell, whereas number of the foxi1e-expressing cells was reduced under the hypertonic condition. These results show the possibility that Xpod is involved in the establishment of a certain subpopulation of ionocytes under hypertonic conditions.
  • Naomi Kogo, Akira Tazaki, Yasuhiro Kashino, Keisuke Morichika, Hidefumi Orii, Makoto Mochii, Kenji Watanabe
    DEVELOPMENTAL BIOLOGY 349(2) 462-469 2011年1月  査読有り
    Mitochondria are accurately transmitted to the next generation through a female germ cell in most animals. Mitochondria produce most ATP, accompanied by the generation of reactive oxygen species (ROS). A specialized mechanism should be necessary for inherited mitochondria to escape from impairments of mtDNA by ROS. Inherited mitochondria are named germ-line mitochondria, in contrast with somatic ones. We hypothesized that germ-line mitochondria are distinct from somatic ones. The protein profiles of germ-line and somatic mitochondria were compared, using oocytes at two different stages in Xenopus laevis. Some subunits of ATP synthase were at a low level in germ-line mitochondria, which was confirmed immunologically. Ultrastructural histochemistry using 3,3'-diaminobenzidine (DAB) Showed that cytochrome c oxidase (COX) activity of germ-line mitochondria was also at a low level. Mitochondria in one oocyte were segregated into germ-line mitochondria and somatic mitochondria, during growth from stage I to VI oocytes. Respiratory activity represented by ATP synthase expression and COX activity was shown to be low during most of the long gametogenetic period. We propose that germ-line mitochondria that exhibit suppressed respiration alleviate production of ROS and enable transmission of accurate mtDNA from generation to generation. (C) 2010 Elsevier Inc. All rights reserved.
  • Ken-Ichi T. Suzuki, Keiko Kashiwagi, Motomu Ujihara, Takuzo Marukane, Akira Tazaki, Kenji Watanabe, Nobuhiko Mizuno, Yoko Ueda, Hisato Kondoh, Akihiko Kashiwagi, Makoto Mochii
    DEVELOPMENTAL DYNAMICS 239(12) 3172-3181 2010年12月  査読有り
    We investigated the characteristics of a novel type I keratin gene in Xenopus laevis during ontogenesis. The transcript was first detected in the posterior region at the late neurula stage, and then restricted to the fin and external gill during embryogenesis. To examine the transcriptional regulation of the keratin gene in vivo, we generated transgenic lines with fluorescent reporter genes driven by its 4.2-kb upstream sequence. The promoter/enhancer activity recapitulated the endogenous gene expression during embryogenesis. Sequential deletion analyses revealed that the regions proximal to the promoter were essential for fin-specific expression. Reporter expression was detected in various organs, including the fin and gill. In particular, robust expression was observed in the developing limbs and gill. The reporter fluorescence rapidly decreased with internal gill resorption during metamorphosis. The transgenic lines carrying the promoter/enhancer should represent valuable tools for elucidating the formation, development and resorption of various organs, especially the gill. Developmental Dynamics 239:3172-3181, 2010. (C) 2010 Wiley-Liss, Inc.
  • Taketoshi Wakabayashi, Jun Kosaka, Makoto Mochii, Yukari Miki, Tetsuji Mori, Yasuharu Takamori, Hisao Yamada
    JOURNAL OF NEUROCHEMISTRY 112(5) 1235-1248 2010年3月  査読有り
    P>C38 antigen is specifically expressed in neuronal cells of the retina. The purpose of this study was to isolate C38 cDNA and determine its molecular functions. Sequence analysis of C38 cDNA revealed that C38 is equivalent to rat BM88, which has been reported to induce cell-cycle arrest and neuronal differentiation in Neuro2a cells. C38 and Ki67, a marker of proliferating cells, were not colocalized during retinal development. C38 was first detected in the retinal ganglion cells at embryonic day 16, much later than the expression of doublecortin, a marker of immature neurons. Although all the horizontal cells were post-mitotic at this stage, C38 was not detected in horizontal cells until the postnatal period. In addition, C38 over-expression did not induce neuronal differentiation or cell-cycle arrest of pluripotent P19 embryonal carcinoma cells. Instead, C38 promoted maturation during neuronal differentiation of P19 embryonal carcinoma cells by down-regulating Oct-3, a pluripotent cell marker and enhancing the expressions of positive regulators of neurogenesis. In conclusion, during retinal development, C38 is first expressed in post-mitotic retinal neurons and is up-regulated during their maturation. C38 does not induce neuronal competence in pluripotent cells, but does promote maturation in already committed neuronal cells.
  • Keisuke Morichika, Kensuke Kataoka, Kohei Terayama, Akira Tazaki, Tsutomu Kinoshita, Kenji Watanabe, Makoto Mochii
    DEVELOPMENT GROWTH & DIFFERENTIATION 52(2) 235-244 2010年2月  査読有り
    Primordial germ cells (PGCs) in Xenopus embryo are specified in the endodermal cell mass and migrate dorsally toward the future gonads. The role of the signal mediated by Notch and Suppressor of Hairless [Su(H)] was analyzed on the migrating PGCs at the tailbud stage. X-Notch-1 and X-Delta-1 are expressed in the migrating PGCs and surrounding endodermal cells, whereas X-Delta-2 and X-Serrate-1 are expressed preferentially in the PGCs. Suppression and constitutive activation of the Notch/Su(H) signaling in the whole endoderm region or selectively in the PGCs resulted in an increase in ectopic PGCs located in lateral or ventral regions. Knocking down of the Notch ligands by morpholino oligonucleotides revealed that X-Delta-2 was indispensable for the correct PGC migration. The ectopic PGCs seemed to have lost their motility in the Notch/Su(H) signal-manipulated embryos. Our results suggest that a cell-to-cell interaction via the Notch/Su(H) pathway has a significant role in the PGC migration by regulating cell motility.
  • Igor Adameyko, Francois Lallemend, Jorge B. Aquino, Jorge A. Pereira, Piotr Topilko, Thomas Mueller, Nicolas Fritz, Anna Beljajeva, Makoto Mochii, Isabel Liste, Dmitry Usoskin, Ueli Suter, Carmen Birchmeier, Patrik Ernfors
    CELL 139(2) 366-379 2009年10月  査読有り
    Current opinion holds that pigment cells, melanocytes, are derived from neural crest cells produced at the dorsal neural tube and that migrate under the epidermis to populate all parts of the skin. Here, we identify growing nerves projecting throughout the body as a stem/progenitor niche containing Schwann cell precursors (SCPs) from which large numbers of skin melanocytes originate. SCPs arise as a result of lack of neuronal specification by Hmx1 homeobox gene function in the neural crest ventral migratory pathway. Schwann cell and melanocyte development share signaling molecules with both the glial and melanocyte cell fates intimately linked to nerve contact and regulated in an opposing manner by Neuregulin and soluble signals including insulin-like growth factor and platelet-derived growth factor. These results reveal SCPs as a cellular origin of melanocytes, and have broad implications on the molecular mechanisms regulating skin pigmentation during development, in health and pigmentation disorders.
  • Makoto Mochii, Yuka Taniguchi
    Electroporation and Sonoporation in Developmental Biology 239-247 2009年  査読有り
    Xenopus laevis is a model system widely used to investigate embryogenesis, metamorphosis, and regeneration. The tail of the Xenopus tadpole is very useful in analyzing the molecular mechanisms underlying appendage regeneration (Slack et al., 2004 Mochii et al., 2007 Slack et al., 2008). It is transparent and suitable for whole-mount observation at the cellular level. The tail regenerates within 2 weeks of amputation. The conventional injection of blastomeres with mRNA, DNA, or antisense oligonucleotides is a powerful tool with which to study genetic mechanisms in early embryos, but it is not effective in late embryos or larvae. A transgenic approach has been used to analyze tail regeneration (Beck et al., 2003, 2006), but its success is largely dependent on the activity of the promoter used. There are limited numbers of promoters available that precisely regulate gene expression spatially and/or temporally. In vivo electroporation is an alternative method that can be used to manipulate gene expression in late embryos and larvae. The introduction of DNA or RNA into the cells of neurula and tailbud embryos has been reported (Eide et al., 2000 Sasagawa et al., 2002 Falk et al., 2007). Targeting larval tissues with in vivo electroporation also has been used to investigate neural networks, metamorphosis, and regeneration (Haas et al., 2001, 2002 Nakajima and Yaoita, 2003 Javaherian and Cline, 2005 Bestman et al., 2006 Boorse et al., 2006 Lin et al., 2007 Mochii et al., 2007). In this chapter, we report a procedure to introduce DNA into the tissues of the tadpole tail. © 2009 Springer Japan.
  • Y Kagiyama, N Gotouda, K Sakagami, K Yasuda, M Mochii, M Araki
    DEVELOPMENT GROWTH & DIFFERENTIATION 47(8) 523-536 2005年10月  査読有り
    Dorsal-ventral (DV) specification in the early optic vesicle plays a crucial role in the proper development of the eye. To address the questions of how DV specification is determined and how it affects fate determination of the optic vesicle, isolated optic vesicles were cultured either in vitro or in ovo. The dorsal and ventral halves of the optic vesicle were fated to develop into retinal pigment epithelium (RPE) and neural retina, respectively, when they were separated from each other and cultured. In optic vesicles treated with collagenase to remove the surrounding tissues, the neuroepithelium gave rise to cRax expression but not Mitf, suggesting that surrounding tissues are necessary for RPE specification. This was also confirmed in in ovo explant cultures. Combination cultures of collagenase-treated optic vesicles with either the dorsal or ventral part of the head indicated that head-derived factors have an important role in the fate determination of the optic vesicle: in the optic vesicles co-cultured with the dorsal part of the head Mitf expression was induced in the neuroepithelium, while the ventral head portion did not have this effect. The dorsal head also suppressed Pax2 expression in the optic vesicle. These observations indicate that factors from the dorsal head portion have important roles in the establishment of DV polarity within the optic vesicle, which in turn induces the patterning and differentiation of the neural retina and pigment epithelium.
  • D Baldessari, Y Shin, O Krebs, R Konig, T Koide, A Vinayagam, U Fenger, M Mochii, C Terasaka, A Kitayama, D Peiffer, N Ueno, R Eils, KW Cho, C Niehrs
    MECHANISMS OF DEVELOPMENT 122(3) 441-475 2005年3月  査読有り
    We have undertaken a large-scale microarray gene expression analysis using cDNAs corresponding to 21,000 Xenopus laevis ESTs. mRNAs from 37 samples, including embryos and adult organs, were profiled. Cluster analysis of embryos of different stages was carried out and revealed expected affinities between gastrulae and neurulae, as well as between advanced neurulae and tadpoles, while egg and feeding larvae were clearly separated. Cluster analysis of adult organs showed some unexpected tissue-relatedness, e.g. kidney is more related to endodermal than to mesodermal tissues and the brain is separated from other neuroectodermal derivatives. Cluster analysis of genes revealed major phases of co-ordinate gene expression between egg and adult stages. During the maternal-early embryonic phase, genes maintaining a rapidly dividing cell state are predominantly expressed (cell cycle regulators, chromatin proteins). Genes involved in protein biosynthesis are progressively induced from mid-embryogenesis onwards. The larval-adult phase is characterised by expression of genes involved in metabolism and terminal differentiation. Thirteen potential synexpression groups were identified, which encompass components of diverse molecular processes or supra-molecular structures, including chromatin, RNA processing and nucleolar function, cell cycle, respiratory chain/Krebs cycle, protein biosynthesis, endoplasmic reticulum, vesicle transport, synaptic vesicle, microtubule, intermediate filament, epithelial proteins and collagen. Data filtering identified genes with potential stage-, region- and organ-specific expression. The dataset was assembled in the iChip microarray database, http://www.dkfz.de/molecular-embryology/microarraydb.html, which allows user-defined queries. The study provides insights into the higher order of vertebrate gene expression, identifies synexpression groups and marker genes, and makes predictions for the biological role of numerous uncharacterized genes. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
  • Y Shin, A Kitayama, T Koide, DA Peiffer, M Mochii, A Liao, N Ueno, KWY Cho
    DEVELOPMENTAL DYNAMICS 232(2) 432-444 2005年2月  査読有り
    To isolate novel genes regulating neural induction, we used a DNA microarray approach. As neural induction is thought to occur by means of the inhibition of bone morphogenetic protein (BMP) signaling, BMP signaling was inhibited in ectodermal cells by overexpression of a dominant-negative receptor. RNAs were isolated from control animal cap explants and from dominant-negative BMP receptor expressing animal caps and subjected to a microarray experiment using newly generated high-density Xenopus DNA microarray chips representing over 17,000 unigenes. We have identified 77 genes that are induced in animal caps after inhibition of BMP signaling, and all of these genes were subjected to whole-mount in situ hybridization analysis. Thirty-two genes showed specific expression in neural tissues. Of the 32, 14 genes have never been linked to neural induction. Two genes that are highly induced by BMP inhibition are inhibitors of Wnt signaling, suggesting that a key step in neural induction is to produce Wnt antagonists to promote anterior neural plate development. Our current analysis also proves that a microarray approach is useful in identifying novel candidate factors involved in neural induction and patterning. (C) 2004 Wiley-Liss, Inc.
  • DA Peiffer, A Von Bubnoff, Y Shin, A Kitayama, M Mochii, N Ueno, KWY Cho
    DEVELOPMENTAL DYNAMICS 232(2) 445-456 2005年2月  査読有り
    Bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor-beta (TGF-beta) superfamily, were originally isolated from bone on the basis of their ability to induce ectopic bone development. Although BMPs are involved in a wide range of developmental and physiological functions, very few vertebrate target genes in this pathway have been identified. To identify target genes regulated by the BMP growth factor family in Xenopus, large-scale microarray analyses were conducted to discover genes directly activated by this factor in dissociated animal cap tissues treated with a combination of the protein synthesis inhibitor cycloheximide and BMP2. Consequent expression patterns and behaviors of the most highly induced genes were analyzed by in situ and reverse transcriptase-polymerase chain reaction analyses. Here, we describe two sets of the most highly induced direct BMP target genes identified using microarrays prepared from two different stages of early Xenopus development. A wide variety of genes are induced by BMP2, ranging from cell cycle controllers, enzymes, signal transduction cascade components, and components of the blood and vascular system. The finding reinforces the notion that BMP signals play important roles in a variety of biological processes. (C) 2004 Wiley-Liss, Inc.
  • Kataoka K, Tazaki A, Orii H, Mochii M, Watanabe K
    Mechanisms of Development 122 S119-S120 2005年  査読有り
  • Shin Y, Kitayama A, Koide T, Peiffer D.A, Mochii M, Liao A, Ueno N, Cho K.W.Y
    Developmental Dynamics 233(1) 2005年  査読有り
  • H Orii, M Mochii, K Watanabe
    DEVELOPMENT GENES AND EVOLUTION 213(3) 138-141 2003年4月  査読有り
    A simple method was developed for RNA interference (RNAi) in the planarian Dugesia japonica. The DjIFb (Dugesia japonica intermediate filament b) gene was used to evaluate the effect of RNAi because both the cDNA and an antiserum against the gene product were available. After transverse cutting at the pre- and post-pharyngeal regions, the middle part of the body fragment was soaked in water containing double-stranded RNA (dsRNA) for about 5 h and then allowed to regenerate in water. On the 5th day of regeneration, little DjIFb protein was detected in the new tissues. When the worms were cut after soaking in dsRNA water, no RNAi effect was observed, suggesting that the dsRNA was introduced through the cut surface. A high concentration of dsRNA or repeated "cutting and soaking" resulted in more effective RNAi. This simple soaking method in combination with expressed sequence tag analysis should be very useful for high-throughput analyses of gene functions in planarian regeneration.
  • T Niwa, M Mochii, A Nakamura, N Shiojiri
    MECHANISMS OF DEVELOPMENT 118(1-2) 139-146 2002年10月  査読有り
    The plumage on the dorsal trunk of normal quail embryos exhibits longitudinal black and brown stripes of pigments produced by melanocytes. However, this pigmentation pattern disappeared in Bh (black at hatch) heterozygous and Homozygous embryos because of overall black and brown pigmentation of plumages, respectively. To investigate the mechanisms of the pigment pattern formation of plumage and clarify the roles of the Bh locus in the pattern formation, we examined the expression pattern of genes relating to melanocyte development(Mitf, MelEM antigen, Kitl,:Kit and EdnrB2) and melanin pigment production (Dct, Tyrp1, Tyr and Mmp115) in Bh mutant and wild-type embryos throughout development. As a result, we found that MelEM antigen was expressed in melanoblasts committed to produce black pigment before apparent melanogenic gene expression, and that Bh heterozygotes and homozygotes showed abnormal expression patterns of the MelEM antigen. These results indicate that MelEM antigen is a good marker for melanoblasts committed to produce black pigment, and suggests that the Bh locus directs melanocytes to produce eumelanin in proper positions. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
  • N Mizuno, M Mochii, TC Takahashi, G Eguchi, TS Okada
    DIFFERENTIATION 64(3) 143-149 1999年3月  査読有り
    The spatio-temporal expression of three crystallin genes (alpha A, beta B1 and gamma) in lenses of Xenopus laevis was studied by in situ hybridization to compare the process of lens formation in embryonic development with that of lens regeneration from cornea that occurs in the tadpole. During embryonic lens development, all three crystallin transcripts were initially detected at the same stage of lens placode formation, and subsequently their signals became restricted to the presumptive lens fiber region. At later stages, the three crystallin genes were expressed in primary and secondary lens fibers, but not in lens epithelium. During lens regeneration, alpha A- and beta B1-crystallin signals were first detected in the presumptive lens fiber region of the lens vesicle. The expression of gamma-crystallin, however, appeared later than the other two crystallin genes and was detected only in morphologically discernible lens fibers. In the later stages of lens regeneration, expression of these crystallins was observed only in the lens fiber region, similar to embryonic lens development. These results reveal that lens regeneration from the inner layer of the outer cornea is not simply a repetition of embryonic lens development, when examined at the level of crystallin gene transcription.
  • S Yazawa, T Ono, Y Tanabe, T Agata, M Mochii, K Noda, K Kino, M Miyakawa, M Mizutani, G Eguchi
    ADVANCES IN COMPARATIVE ENDOCRINOLOGY, TOMES 1 AND 2 467-471 1997年  査読有り
    Avian embryos can be cultured in vitro from the single-cell stage to hatching. If the capsular thick albumen is removed, the germinal disc at this stage is recognized more clearly with the aid of an image-processor system. We have succeeded in culturing the albumen removed (naked) quail ova to yield hatchlings with a hatchability of 19.4%, We injected pMiwZ containing lacZ, as a circler and a linear (digested with kpnI) forms, into the naked ova, They were then cultured in vitro and observed lacZ gene expression at later embryonic stages, Frequency and degree of the gene expression were clearly higher than that injected through albumen capsule and quail is shown to be a excellent animal model for the study of transgenesis in birds.
  • T ONO, S MUTO, T MATSUMOTO, M MOCHII, G EGUCHI
    EXPERIMENTAL ANIMALS 44(4) 275-278 1995年10月  査読有り
    During early stages in avian embryogenesis primordial germ cells (PGCs) show a unique migration pathway toward the gonadal anlage through the circulation. In the present study, liposomes consisting of plasmid DNA (pMiwZ; containing lacZ as a reporter) and Lipofectin were injected into the marginal veins of quail embryos during the stages PGCs were circulating in the blood vessels. The lacZ expression was then histochemically detected in the gonads at later embryonic stages, indicating the expression of the injected DNA in PGCs.
  • Agata K, Mochii M, Kobayashi H, Sawada K, Yamamoto TS, Kodama R, Eguchi G
    Human cell : official journal of Human Cell Research Society 2(4) 369-374 1989年12月  査読有り

MISC

 87
  • Takuji Sugiura, Akira Tazaki, Naoto Ueno, Kenji Watanabe, Makoto Mochii
    MECHANISMS OF DEVELOPMENT 126(1-2) 56-67 2009年1月  
    Amputation of the larval tail of Xenopus injures the notochord, spinal cord, muscle masses, mesenchyme, and epidermis, induces the growth and differentiation of cells in those tissues, and results in tail regeneration. A dorsal incision in the larval tail injures the same tissues and induces cell growth and differentiation, but never results in the formation of any extra appendages. The first sign of tail regeneration is the multilayered wound epidermis and Xwnt-5a expression in the distal region, neither of which is observed in the recovering region after a dorsal incision. To evaluate the role of Xwnt-5a in tail regeneration, Xwnt-5a was overexpressed in the recovering region. When an animal cap injected with Xwnt-5a mRNA was grafted into the dorsal incision, an ectopic protrusion was formed. Morphological and molecular analyses revealed that the protrusion was an ectopic larval tail, which was equivalent to the regenerating tail but different from the tail that develops from the embryonic tail bud. Lineage labeling revealed that the major differentiated structures of the ectopic tail were formed from host cells, suggesting that Xwnt-5a induced host cells to make a complete tail. The ectopic tail was not induced by Xwnt-8 or Xwnt-11, demonstrating the specificity of Xwnt-5a in this process. A pharmacological study showed that JNK signaling is required in tail regeneration. These results support the proposition that Xwnt-5a plays an instructive role in larval tail regeneration via Wnt/JNK signaling. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
  • Hidefumi Fujii, Masao Sakai, Shin-ichiro Nishimatsu, Tsutomu Nohno, Makoto Mochii, Hidefumi Orii, Kenji Watanabe
    DEVELOPMENT GROWTH & DIFFERENTIATION 50(3) 169-180 2008年4月  
    We examined several candidate posterior/mesodermal inducing molecules using permanent blastula-type embryos (PBEs) as an assay system. Candidate molecules were injected individually or in combination with the organizer factor chordin mRNA. Injection of chordin alone resulted in a white hemispherical neural tissue surrounded by a large circular cement gland, together with anterior neural gene expression and thus the development of the anterior-most parts of the embryo, without mesodermal tissues. When VegT, eFGF or Xbra mRNAs were injected into a different blastomere of the chordin-injected PBEs, the embryos elongated and formed eye, muscle and pigment cells, and expressed mesodermal and posterior neural genes. These embryos formed the full spectrum of the anteroposterior embryonic axis. In contrast, injection of CSKA-Xwnt8 DNA into PBEs injected with chordin resulted in eye formation and expression of En2, a midbrain/hindbrain marker, and Xnot, a notochord marker, but neither elongation, muscle formation nor more posterior gene expression. Injection of chordin and posteriorizing molecules into the same cell did not result in elongation of the embryo. Thus, by using PBEs as the host test system we show that (i) overall anteroposterior neural development, mesoderm (muscle) formation, together with embryo elongation can occur through the synergistic effect(s) of the organizer molecule chordin, and each of the 'overall posteriorizing molecules' eFGF, VegT and Xbra; (ii) Xwnt8-mediated posteriorization is restricted to the eye level and is independent of mesoderm formation; and (iii) proper anteroposterior patterning requires a separation of the dorsalizing and posteriorizing gene expression domains.
  • Yuka Taniguchi, Takuji Sugiura, Akira Tazaki, Kenji Watanabe, Makoto Mochii
    DEVELOPMENT GROWTH & DIFFERENTIATION 50(2) 109-120 2008年2月  
    Tail regeneration in urodeles is dependent on the spinal cord (SC), but it is believed that anuran larvae regenerate normal tails without the SC. To evaluate the precise role of the SC in anuran tail regeneration, we developed a simple operation method to ablate the SC completely and minimize the damage to the tadpole using Xenopus laevis. The SC-ablated tadpole regenerated a twisted and smaller tail. These morphological abnormalities were attributed to defects in the notochord (NC), as the regenerated NC in the SC-ablated tail was short, slim and twisted. The SC ablation never affected the early steps of the regeneration, including closure of the amputated surface with epidermis and accumulation of the NC precursor cells. The proliferation rate of the NC precursor cells, however, was reduced, and NC cell maturation was retarded in the SC-ablated tail. These results show that the SC has an essential role in the normal tail regeneration of Xenopus larvae, especially in the proliferation and differentiation of the NC cells. Gene expression analysis and implantation of a bead soaked with growth factor showed that fibroblast growth factor-2 and -10 were involved in the signaling molecules, which were expressed in the SC and stimulated growth of the NC cells.
  • Makoto Mochii, Yuka Taniguchi, Isshin Shikata
    DEVELOPMENT GROWTH & DIFFERENTIATION 49(2) 155-161 2007年2月  
    The tail of the Xenopus tadpole contains major axial structures, including a spinal cord, notochord and myotomes, and regenerates within 2 weeks following amputation. The tail regeneration in Xenopus can provide insights into the molecular basis of the regeneration mechanism. The regenerated tail has some differences from the normal tail, including an immature spinal cord and incomplete segmentation of the muscle masses. Lineage analyses have suggested that the tail tissues are reconstructed with lineage-restricted stem cells derived from their own tissues in clear contrast to urodele regeneration, in which multipotent blastema cells derived from differentiated cells play a major role. Comprehensive gene expression analyses resulted in the identification of a panel of genes involved in sequential steps of the regeneration. Manipulation of genes' activities suggested that the tail regeneration is regulated through several major signaling pathways.
  • 渡辺 憲二, 餅井 真, 織井 秀文
    兵庫県立大学大学院物質理学研究科・生命理学研究科研究一覧 17 165-165 2006年10月10日  

共同研究・競争的資金等の研究課題

 21