研究者業績

水島 恒裕

ミズシマ ツネヒロ  (Tsunehiro Mizushima)

基本情報

所属
兵庫県立大学 大学院理学研究科 教授
学位
博士(理学)(大阪大学)

研究者番号
90362269
J-GLOBAL ID
200901074435540475
researchmap会員ID
1000366778

外部リンク

論文

 68
  • Tadashi Satoh, Maho Yagi-Utsumi, Nozomi Ishii, Tsunehiro Mizushima, Hirokazu Yagi, Ryuichi Kato, Yuriko Tachida, Hiroaki Tateno, Ichiro Matsuo, Koichi Kato, Tadashi Suzuki, Yukiko Yoshida
    FEBS letters 2024年8月22日  
    The cytosolic peptide:N-glycanase (PNGase) is involved in the quality control of N-glycoproteins via the endoplasmic reticulum-associated degradation (ERAD) pathway. Mutations in the gene encoding cytosolic PNGase (NGLY1 in humans) cause NGLY1 deficiency. Recent findings indicate that the F-box protein FBS2 of the SCFFBS2 ubiquitin ligase complex can be a promising drug target for NGLY1 deficiency. Here, we determined the crystal structure of bovine FBS2 complexed with the adaptor protein SKP1 and a sugar ligand, Man3GlcNAc2, which corresponds to the core pentasaccharide of N-glycan. Our crystallographic data together with NMR data revealed the structural basis of disparate sugar-binding specificities in homologous FBS proteins and identified a potential druggable pocket for in silico docking studies. Our results provide a potential basis for the development of selective inhibitors against FBS2 in NGLY1 deficiency.
  • Kazuya Nishio, Tomoyuki Kawarasaki, Yuki Sugiura, Shunsuke Matsumoto, Ayano Konoshima, Yuki Takano, Mayuko Hayashi, Fumihiko Okumura, Takumi Kamura, Tsunehiro Mizushima, Kunio Nakatsukasa
    Science advances 9(15) eadf1956 2023年4月14日  査読有り
    Deficiencies in mitochondrial protein import are associated with a number of diseases. However, although nonimported mitochondrial proteins are at great risk of aggregation, it remains largely unclear how their accumulation causes cell dysfunction. Here, we show that nonimported citrate synthase is targeted for proteasomal degradation by the ubiquitin ligase SCFUcc1. Unexpectedly, our structural and genetic analyses revealed that nonimported citrate synthase appears to form an enzymatically active conformation in the cytosol. Its excess accumulation caused ectopic citrate synthesis, which, in turn, led to an imbalance in carbon flux of sugar, a reduction of the pool of amino acids and nucleotides, and a growth defect. Under these conditions, translation repression is induced and acts as a protective mechanism that mitigates the growth defect. We propose that the consequence of mitochondrial import failure is not limited to proteotoxic insults, but that the accumulation of a nonimported metabolic enzyme elicits ectopic metabolic stress.
  • Keito Hiragi, Akira Nishide, Kenji Takagi, Kazuhiro Iwai, Minsoo Kim, Tsunehiro Mizushima
    The Journal of Biochemistry 173(4) 317-326 2023年1月4日  査読有り責任著者
    Summary Pathogenic bacteria deliver virulence factors called effectors into host cells in order to facilitate infection. The Shigella effector proteins IpaH1.4 and IpaH2.5 are members of the “novel E3 ligase” (NEL)-type bacterial E3 ligase family. These proteins ubiquitinate the linear ubiquitin assembly complex (LUBAC) to inhibit nuclear factor (NF)-κB activation and, concomitantly, the inflammatory response. However, the molecular mechanisms underlying the interaction and recognition between IpaH1.4 and IpaH2.5 and LUBAC is unclear. Here we present the crystal structures of the substrate-recognition domains of IpaH1.4 and IpaH2.5 at resolutions of 1.4 and 3.4 Å, respectively. The LUBAC-binding site on IpaH1.4 was predicted based on structural comparisons with the structures of other NEL-type E3s. Structural and biochemical data were collected and analyzed to determine the specific residues of IpaH1.4 that are involved in interactions with LUBAC and influence NF-κB signaling. The new structural insight presented here demonstrates how bacterial pathogens target innate immune signaling pathways.
  • Akira Nishide, Kenji Takagi, Minsoo Kim, Tsunehiro Mizushima
    2022年2月15日  
  • Nobuo Kanazawa, Hiroaki Hemmi, Noriko Kinjo, Hidenori Ohnishi, Jun Hamazaki, Hiroyuki Mishima, Akira Kinoshita, Tsunehiro Mizushima, Satoru Hamada, Kazuya Hamada, Norio Kawamoto, Saori Kadowaki, Yoshitaka Honda, Kazushi Izawa, Ryuta Nishikomori, Miyuki Tsumura, Yusuke Yamashita, Shinobu Tamura, Takashi Orimo, Toshiya Ozasa, Takashi Kato, Izumi Sasaki, Yuri Fukuda-Ohta, Naoko Wakaki-Nishiyama, Yutaka Inaba, Kayo Kunimoto, Satoshi Okada, Takeshi Taketani, Koichi Nakanishi, Shigeo Murata, Koh-Ichiro Yoshiura, Tsuneyasu Kaisho
    Nature communications 12(1) 6819-6819 2021年11月24日  査読有り
    Impaired proteasome activity due to genetic variants of certain subunits might lead to proteasome-associated autoinflammatory syndromes (PRAAS). Here we report a de novo heterozygous missense variant of the PSMB9 proteasome subunit gene in two unrelated Japanese infants resulting in amino acid substitution of the glycine (G) by aspartic acid (D) at position 156 of the encoded protein β1i. In addition to PRAAS-like manifestations, these individuals suffer from pulmonary hypertension and immunodeficiency, which are distinct from typical PRAAS symptoms. The missense variant results in impaired immunoproteasome maturation and activity, yet ubiquitin accumulation is hardly detectable in the patients. A mouse model of the heterozygous human genetic variant (Psmb9G156D/+) recapitulates the proteasome defects and the immunodeficiency phenotype of patients. Structurally, PSMB9 G156D interferes with the β-ring-βring interaction of the wild type protein that is necessary for 20S proteasome formation. We propose the term, proteasome-associated autoinflammatory syndrome with immunodeficiency (PRAAS-ID), to indicate a separate category of autoinflammatory diseases, similar to, but distinct from PRAAS, that describes the patients in this study.

MISC

 16
  • 佐伯 泰, 水島 恒裕
    実験医学 32(10) 1617-1622 2014年6月  
    プロテアソームは真核生物に普遍的にみられる約2.5MDaの巨大な細胞内タンパク質分解装置であり、ユビキチン化されたタンパク質を選択的に分解することでさまざまな生命現象を制御している。プロテアソームはその名を受けてから四半世紀が経過したが、プロテアソームがどのような構造をしており、どのようにユビキチン化タンパク質を分解するのか、細胞内のどこで形成されるのか、どのように存在しているのかなど長い間不明であった。本稿ではプロテアソームに関する最近の研究動向をわれわれの知見と併せて概説したい。(著者抄録)
  • 高木 賢治, 水島 恒裕
    生化学 85(9) 789-794 2013年9月  
  • 水島 恒裕, 西尾 和也
    実験医学 29(12) 1875-1881 2011年8月  
    プロテアソームは多くのサブユニットからなる非常に複雑な超分子複合体である。その機能は単純にタンパク質分解を行うだけではなく、ユビキチンの認識、除去、アンフォールディング、多様な触媒活性など多くの役割を同時に果たす非常に高度なものである。また、プロテアソームには複数の制御因子群が存在し、異なる複合体を形成することでそれぞれの役割を果たしている。本稿ではプロテアソームの複合体構造解析により明らかとなった、高度な機能と反応機構を紹介する。(著者抄録)
  • Sangwoo Kim, Yasushi Saeki, Keisuke Fukunaga, Atsuo Suzuki, Kenji Takagi, Takashi Yamane, Keiji Tanaka, Tsunehiro Mizushima, Koichi Kato
    JOURNAL OF BIOLOGICAL CHEMISTRY 285(20) 15159-15166 2010年5月  
    The ubiquitin-proteasome pathway is a major proteolytic system in eukaryotic cells and regulates various cellular processes. The 26 S proteasome, the central enzyme of this pathway, consists of a proteolytic core particle and two 19 S regulatory particles (RPs) composed of ATPase (Rpt) and non-ATPase (Rpn) subunits. Growing evidence indicates that proteasome assembly is assisted by a variety of chaperones. In particular, it has been reported recently that Nas2, Nas6, Rpn14, and Hsm3 bind specific Rpt subunits, thereby contributing to the formation of 19 S RP. Rpn14 transiently binds to the C-terminal domain of the Rpt6 subunit (Rpt6-C) during maturation of the ATPase ring of 19 S RP. In this study, we determined the crystal structure of yeast Rpn14 at 2.0 angstrom resolution, which revealed that this chaperone consists of a unique N-terminal domain with unknown function and a C-terminal domain assuming a canonical seven-bladed beta-propeller fold. The Rpt6-binding site on Rpn14 was predicted based on structural comparison with the complex formed between Nas6 and Rpt3-C. The top face of Rpn14 exhibits a highly acidic surface area, whereas the putative interacting surface of Rpt6-C is basic. By inspection of structural data along with genetic and biochemical data, we determined the specific residues of Rpn14 and Rpt6 for complementary charge interactions that are required for 19 S RP assembly.
  • T. Mizushima, Y. Yoshoda, T. Kumanomidou, Y. Hasegawa, A. Suzuki, T. Yamane, K. Tanaka
    FEBS JOURNAL 275 184-184 2008年6月  
  • 八代田 英樹, 水島 恒裕
    細胞工学 27(5) 474-475 2008年4月  
  • Hideki Yashiroda, Tsunehiro Mizushima, Kenta Okamoto, Tomie Kameyama, Hidemi Hayashi, Toshihiko Kishimoto, Shin-ichiro Niwa, Masanori Kasahara, Eiji Kurimoto, Eri Sakata, Kenji Takagi, Atsuo Suzuki, Yuko Hirano, Shigeo Murata, Koichi Kato, Takashi Yamane, Keiji Tanaka
    NATURE STRUCTURAL & MOLECULAR BIOLOGY 15(3) 228-236 2008年3月  
    Eukaryotic 20S proteasomes are composed of two alpha-rings and two beta-rings, which form an alpha beta beta alpha stacked structure. Here we describe a proteasome-specific chaperone complex, designated Dmp1-Dmp2, in budding yeast. Dmp1-Dmp2 directly bound to the alpha 5 subunit to facilitate alpha-ring formation. In Delta dmp1 cells, alpha-rings lacking alpha 4 and decreased formation of 20S proteasomes were observed. Dmp1-Dmp2 interacted with proteasome precursors early during proteasome assembly and dissociated from the precursors before the formation of half-proteasomes. Notably, the crystallographic structures of Dmp1 and Dmp2 closely resemble that of PAC3-a mammalian proteasome-assembling chaperone; nonetheless, neither Dmp1 nor Dmp2 showed obvious sequence similarity to PAC3. The structure of the Dmp1-Dmp2-alpha 5 complex reveals how this chaperone functions in proteasome assembly and why it dissociates from proteasome precursors before the b-rings are assembled.
  • 水島 恒裕, 吉田 雪子
    実験医学 26(2) 201-206 2008年2月  
    新生タンパク質は小胞体において厳密に品質管理を受けており、正しい立体構造をとれなかったタンパク質は小胞体関連分解(ERAD)機構によって細胞質へ逆行輸送後、ユビキチン・プロテアソーム系により分解される。SCFFbs1はこの経路において糖鎖を目印として糖タンパク質にユビキチンを付加するユビキチンリガーゼである。SCFFbs1の糖鎖認識機構がX線結晶構造解析により示され、その合理的なシステムが明らかになった。本稿ではSCFFbs1立体構造より得られた知見とFbs1の新たな機能に関して紹介する。(著者抄録)
  • Kyoko Shinzawa-Itoh, Hiroshi Aoyama, Kazumasa Muramoto, Hirohito Terada, Tsuyosyhi Kurauchi, Yoshiki Tadehara, Akiko Yamasaki, Takashi Sugimura, Sadamu Kurono, Kazuo Tsujimoto, Tsunehiro Mizushima, Eiki Yamashita, Tomitake Tsukihara, Shinya Yoshikawa
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 64 C289-C289 2008年  
  • Kazuya Nishio, Kawai Kentaro, Kim Sang-Woo, Mizushima Tsunehiro, Yamane Takashi, Hamazaki Jun, Murata Shigeo, Tanaka Keiji, Morimoto Yukio
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 64 C278-C278 2008年  
  • 岡崎誠司, 岡崎誠司, 鈴木淳巨, 水島恒裕, 米田英伸, 浅野泰久, 山根隆
    酵素工学研究会講演会講演要旨集 60th 72 2008年  
  • Tsunehiro Mizushima, Yukiko Yoshida, Taichi Kumanomidou, Yuko Hasegawa, Atsuo Suzuki, Takashi Yamane, Keiji Tanaka
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 104(14) 5777-5781 2007年4月  
    The ubiquitin ligase complex SCFFbs1, which contributes to the ubiquitination of glycoproteins, is involved in the endoplasmic reticulum-associated degradation pathway. In SCF ubiquitin ligases, a diverse array of F-box proteins confers substrate specificity. Fbs1/Fbx2, a member of the F-box protein family, recognizes high-mannose oligosaccharides. To elucidate the structural basis of SCFFbs1 function, we determined the crystal structures of the Skp1-Fbs1 complex and the sugar-binding domain (SBD) of the Fbs1-glycoprotein complex. The mechanistic model indicated by the structures appears to be well conserved among the SCIF ubiquitin ligases. The structure of the SBD-glycoprotein complex indicates that the SBD primarily recognizes Man(3)GlcNAc(2), thereby explaining the broad activity of the enzyme against various glycoproteins. Comparison of two crystal structures of the Skp1-Fbs1 complex revealed the relative motion of a linker segment between the F-box and the SBD domains, which might underlie the ability of the complex to recognize different acceptor lysine residues for ubiquitination.
  • 水島 恒裕
    医学のあゆみ 211(1) 17-22 2004年10月  
    ユビキチンシステムは生体内における不要蛋白質分解系において中心的役割を果たしている.更に,このシステムに異常をきたすことを原因とする疾病も多く報告されている.ユビキチンシステムが生体内でどのように機能しているかを分子レベルで理解することは重要であり,ユビキチンシステムに関与する種々の酵素の構造生物学的研究が行われている.そこで,このユビキチンシステムを構成する酵素群,すなわちユビキチン活性化酵素(E1),ユビキチン結合酵素(E2),ユビキチンリガーゼ(E3)について,単量体型および複合体型酵素群の立体構造より明らかになった知見について紹介した
  • T Mizushima, T Hirao, Y Yoshida, SJ Lee, T Chiba, K Iwai, Y Yamaguchi, K Kato, T Tsukihara, K Tanaka
    NATURE STRUCTURAL & MOLECULAR BIOLOGY 11(4) 365-370 2004年4月  
    SCFFbs1 is a ubiquitin ligase that functions in the endoplasmic reticulum (ER)-associated degradation pathway. Fbs1/Fbx2, a member of the F-box proteins, recognizes high-mannose oligosaccharides. Efficient binding to an N-glycan requires di-N-acetylchitobiose ( chitobiose). Here we report the crystal structures of the sugar-binding domain (SBD) of Fbs1 alone and in complex with chitobiose. The SBD is composed of a ten-stranded antiparallel beta-sandwich. The structure of the SBD chitobiose complex includes hydrogen bonds between Fbs1 and chitobiose and insertion of the methyl group of chitobiose into a small hydrophobic pocket of Fbs1. Moreover, NMR spectroscopy has demonstrated that the amino acid residues adjoining the chitobiose-binding site interact with the outer branches of the carbohydrate moiety. Considering that the innermost chitobiose moieties in N-glycans are usually involved in intramolecular interactions with the polypeptide moieties, we propose that Fbs1 interacts with the chitobiose in unfolded N-glycoprotein, pointing the protein moiety toward E2 for ubiquitination.
  • 水島 恒裕, 海野 昌喜
    実験医学 19(2) 239-244 2001年1月  
    生体高分子の立体構造を明らかにすることは,その機能を研究するために正確で重要な情報を供給する.プロテアソームのような超分子複合体のX線結晶構造解析は,その非常に大きな分子量と構造の複雑性から通常の水溶性タンパク質の構造解析とは違った困難が存在する.しかし,それらを解決して明らかとなった立体構造により,超分子として複合体を形成することによる制御された機能とその活性が明らかとなった.プロテアソームの構造解析と,それにより明らかになった知見を紹介した

共同研究・競争的資金等の研究課題

 32