研究者業績

川久保 哲

カワクボ サトシ  (Satoshi Kawakubo)

基本情報

所属
兵庫県立大学 大学院 理学研究科 教授
学位
博士(理学)(2000年3月 大阪大学)
修士(理学)(1996年3月 大阪大学)

研究者番号
80360303
J-GLOBAL ID
200901036458180426
researchmap会員ID
5000071040

学歴

 2

論文

 11
  • 川久保哲, 松浦望
    数理解析研究所講究録別冊 B91 13-35 2023年2月  査読有り
  • Satoshi Kawakubo
    Journal of Geometry and Physics 133 242-259 2018年11月  査読有り
  • Satoshi Kawakubo
    JOURNAL OF MATHEMATICAL PHYSICS 55(8) 2014年8月  査読有り
    The Kirchhoff elastic rod is a classical mathematical model of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler-Lagrange equations associated to the energy with the effect of bending and twisting. We consider the initial-value problem for the Euler-Lagrange equations in a Riemannian manifold. In a previous paper, the author proved the existence and uniqueness of global solutions of the initial-value problem in the case where the ambient space is a space form. In the present paper, we extend this result to the case where the ambient space is a general complete Riemannian manifold. This implies that an arbitrary Kirchhoff elastic rod of finite length in a complete Riemannian manifold extends to that of infinite length. (C) 2014 AIP Publishing LLC.
  • Satoshi Kawakubo
    JOURNAL OF GEOMETRY AND PHYSICS 76 158-168 2014年2月  査読有り
    We give examples of Kirchhoff rod centerlines in five-dimensional space forms which are fully immersed and not helices. We also show that the natural curvatures of these Kirchhoff rod centerlines are expressed explicitly in terms of Jacobi sn function. (C) 2013 Elsevier B.V. All rights reserved.
  • Satoshi Kawakubo
    OSAKA JOURNAL OF MATHEMATICS 50(4) 921-945 2013年12月  査読有り
    The localized induction hierarchy in three-dimensional space forms is studied. In particular, we determine all the generating curves of congruence solutions to each evolution equation belonging to the localized induction hierarchy. Here, a congruence solution means a solution moving without changing shape. Also, we give the characterization of some low-order soliton curves.
  • Satoshi Kawakubo
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY 88(1) 70-80 2013年8月  査読有り
    The Kirchhoff elastic rod is one of the mathematical models of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler-Lagrange equations associated to the energy with the effect of bending and twisting. In this paper, we consider Kirchhoff elastic rods in a space form. In particular, we give the existence and uniqueness of global solutions of the initial-value problem for the Euler-Lagrange equations. This implies that an arbitrary Kirchhoff elastic rod of finite length extends to that of infinite length.
  • Satoshi Kawakubo
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES 87(1) 5-9 2011年1月  査読有り
    In this paper, we give examples of Kirchhoff rod centerlines fully immersed in higher-dimensional space forms. More precisely, we prove that any helix in a space form is a Kirchhoff rod centerline. These examples imply the difference of the geometric properties between Kirchhoff rod centerlines and elasticae.
  • Satoshi Kawakubo
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN 60(2) 551-582 2008年4月  査読有り
    The Kirchhoff elastic rod is one of the mathematical models of thin elastic rods, and is characterized as a critical point of the energy functional obtained by adding the effect of twisting to the bending energy. In this paper, we investigate Kirchhoff elastic rods in three-dimensional space forms. In particular, we give explicit formulas of Kirchhoff elastic rods in the three-sphere and in the three-dimensional hyperbolic space in terms of Jacobi sn function and the elliptic integrals.
  • Satoshi Kawakubo
    TOHOKU MATHEMATICAL JOURNAL 56(2) 205-235 2004年6月  査読有り
    The Kirchhoff elastic rod is one of the mathematical models of thin elastic rods, and is a critical point of the energy functional with the effect of bending and twisting. In this paper, we study Kirchhoff elastic rods in the three-sphere of constant curvature. In particular, we give explicit expressions of Kirchhoff elastic rods in terms of elliptic functions and integrals. In addition, we obtain equivalent conditions for Kirchhoff elastic rods to be closed, and give an example of closed Kirchhoff elastic rods.
  • Satoshi Kawakubo
    TOHOKU MATHEMATICAL JOURNAL 54(2) 179-193 2002年6月  査読有り
    Imagine a thin elastic rod like a piano wire. We consider the situation that the elastic rod is bent and twisted and both ends are welded together to form a smooth loop. Then, does there exist a stable equilibrium? In this paper, we generalize the energy of uniform symmetric Kirchhoff elastic rods in the 3-dimensional Euclidean space to consider such a variational problem in a Riemannian manifold. We give the existence and regularity of minimizers of the energy in a compact or homogeneous Riemannian manifold.
  • Satoshi Kawakubo
    OSAKA JOURNAL OF MATHEMATICS 37(2) U3-U3 2000年6月  査読有り

所属学協会

 1

共同研究・競争的資金等の研究課題

 11