Kazuya Kubo, Mamoru Sadahiro, Sonomi Arata, Norihisa Hoshino, Tomofumi Kadoya, Tomoyuki Akutagawa, Reizo Kato, Jun-ichi Yamada
Crystals 11(10) 1154-1154 2021年9月23日 査読有り招待有り筆頭著者責任著者
The effects of substituents on the arrangement of metal–dithiolene complexes based on π-conjugated systems, which are extensively used to synthesize various functional materials, have not been studied adequately. New donor-type nickel–dithiolene complexes fused with bulky cycloalkane substituents [Ni(Cn-dddt)2] (C5-dddt = 4a,5,6,6a-pentahydro-1,4-benzodithiin-2,3-dithiolate; C6-dddt = 4a,5,6,7,8,8a-hexahydro-1,4-benzodithiin-2,3-dithiolate; C7-dddt = 4a,5,6,7,8,9,9a-heptahydro-1,4-benzodithiin-2,3-dithiolate; and C8-dddt = 4a,5,6,7,8,9,10,10a-octahydro-1,4-benzodithiin-2,3-dithiolate) were synthesized in this study. All the complexes were crystallized in cis-[Ni(cis-Cn-dddt)2] conformations with cis-oriented (R,S) conformations around the cycloalkylene groups in the neutral state. Unique molecular arrangements with a three-dimensional network, a one-dimensional column, and a helical molecular arrangement were formed in the crystals owing to the flexible cycloalkane moieties. New 2:1 cation radical crystals of [Ni(C5-dddt)2]2(X) (X = ClO4− or PF6−), obtained by electrochemical crystallization, exhibited semiconducting behaviors (ρrt = 0.8 Ω cm, Ea = 0.09 eV for the ClO4− crystal; 4.0 Ω cm, 0.13 eV for the PF6− crystal) under ambient pressure due to spin-singlet states between the dimers of the donor, which were in accordance with the conducting behaviors under hydrostatic pressure (ρrt = 0.2 Ω cm, Ea = 0.07 eV for the ClO4− crystal; 1.0 Ω cm, 0.12 eV for the PF6− crystal at 2.0 GPa).