研究者業績

竹村 匡正

タケムラ タダマサ  (Takemura Tadamasa)

基本情報

所属
兵庫県立大学 大学院 情報科学研究科 教授
(兼任)社会情報科学部 教授
(兼任)先端医療工学研究所 教授
(兼任)大学院 応用情報科学研究科 教授
神戸大学 生命・医学系保健学域 特命教授
学位
博士(保健学)(2003年3月 大阪大学)

J-GLOBAL ID
200901083307620880
researchmap会員ID
6000016392

京都大学大学院医学研究科 非常勤講師

姫路獨協大学 非常勤講師

国立循環器病研究センター 客員研究員

神戸大学医学部附属病院 医学研究員


研究キーワード

 3

論文

 124
  • 竹村 匡正
    Precision Medicine 7(12) 71-74 2024年11月  筆頭著者責任著者
  • 竹村 匡正, 本谷 崇之, 櫻井 理紗, 佐藤 瑞月, 門野 勇介, 山下 晃平, 森本 崇裕, 岸本 和昌
    Precision Medicine 7(9) 47-51 2024年8月  筆頭著者責任著者
  • Kenji Yoshitsugu, Eisuke Shimizu, Hiroki Nishimura, Rohan Khemlani, Shintaro Nakayama, Tadamasa Takemura
    Bioengineering 11(3) 273-273 2024年3月12日  査読有り責任著者
    Ophthalmological services face global inadequacies, especially in low- and middle-income countries, which are marked by a shortage of practitioners and equipment. This study employed a portable slit lamp microscope with video capabilities and cloud storage for more equitable global diagnostic resource distribution. To enhance accessibility and quality of care, this study targets corneal opacity, which is a global cause of blindness. This study has two purposes. The first is to detect corneal opacity from videos in which the anterior segment of the eye is captured. The other is to develop an AI pipeline to detect corneal opacities. First, we extracted image frames from videos and processed them using a convolutional neural network (CNN) model. Second, we manually annotated the images to extract only the corneal margins, adjusted the contrast with CLAHE, and processed them using the CNN model. Finally, we performed semantic segmentation of the cornea using annotated data. The results showed an accuracy of 0.8 for image frames and 0.96 for corneal margins. Dice and IoU achieved a score of 0.94 for semantic segmentation of the corneal margins. Although corneal opacity detection from video frames seemed challenging in the early stages of this study, manual annotation, corneal extraction, and CLAHE contrast adjustment significantly improved accuracy. The incorporation of manual annotation into the AI pipeline, through semantic segmentation, facilitated high accuracy in detecting corneal opacity.
  • Kenji Yoshitsugu, Kazumasa Kishimoto, Tadamasa Takemura
    2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology 2023年12月7日  査読有り
  • Takayuki Mototani, Tadamasa Takemura
    45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2023年7月  査読有り

MISC

 158

講演・口頭発表等

 27

共同研究・競争的資金等の研究課題

 19