研究者業績

吉川 武

ヨシカワ タケシ  (Takeshi Yoshikawa)

基本情報

所属
藤田医科大学 医学部 放射線診断学講座 臨床教授
学位
医学士(1994年3月 神戸大学医学部)
博士(医学)(2000年9月 神戸大学大学院医学研究科)

J-GLOBAL ID
201301059890537338
researchmap会員ID
7000004230

学歴

 2

論文

 162
  • 大野 良治, 吉川 武, 竹中 大祐, 神山 久信, 小澤 良之
    肺癌 63(5) 464-464 2023年10月  
  • 竹中 大祐, 小澤 良之, 吉川 武, 大野 良治
    肺癌 63(5) 464-464 2023年10月  
  • Yoshiharu Ohno, Yoshiyuki Ozawa, Hisanobu Koyama, Takeshi Yoshikawa, Daisuke Takenaka, Hiroyuki Nagata, Takahiro Ueda, Hirotaka Ikeda, Hiroshi Toyama
    Cancers 2023年2月  
  • Yoshiharu Ohno, Kota Aoyagi, Atsushi Yaguchi, Shinichiro Seki, Yoshiko Ueno, Yuji Kishida, Daisuke Takenaka, Takeshi Yoshikawa
    Radiology 191740-191740 2020年5月26日  査読有り
    Background Deep learning may help to improve computer-aided detection of volume (CADv) measurement of pulmonary nodules at chest CT. Purpose To determine the efficacy of a deep learning method for improving CADv for measuring the solid and ground-glass opacity (GGO) volumes of a nodule, doubling time (DT), and the change in volume at chest CT. Materials and Methods From January 2014 to December 2016, patients with pulmonary nodules at CT were retrospectively reviewed. CADv without and with a convolutional neural network (CNN) automatically determined total nodule volume change per day and DT. Area under the curves (AUCs) on a per-nodule basis and diagnostic accuracy on a per-patient basis were compared among all indexes from CADv with and without CNN for differentiating benign from malignant nodules. Results The CNN training set was 294 nodules in 217 patients, the validation set was 41 nodules in 32 validation patients, and the test set was 290 nodules in 188 patients. A total of 170 patients had 290 nodules (mean size ± standard deviation, 11 mm ± 5; range, 4-29 mm) diagnosed as 132 malignant nodules and 158 benign nodules. There were 132 solid nodules (46%), 106 part-solid nodules (36%), and 52 ground-glass nodules (18%). The test set results showed that the diagnostic performance of the CNN with CADv for total nodule volume change per day was larger than DT of CADv with CNN (AUC, 0.94 [95% confidence interval {CI}: 0.90, 0.96] vs 0.67 [95% CI: 0.60, 0.74]; P < .001) and CADv without CNN (total nodule volume change per day: AUC, 0.69 [95% CI: 0.62, 0.75]; P < .001; DT: AUC, 0.58 [95% CI: 0.51, 0.65]; P < .001). The accuracy of total nodule volume change per day of CADv with CNN was significantly higher than that of CADv without CNN (P < .001) and DT of both methods (P < .001). Conclusion Convolutional neural network is useful for improving accuracy of computer-aided detection of volume measurement and nodule differentiation capability at CT for patients with pulmonary nodules. © RSNA, 2020 Online supplemental material is available for this article.
  • Yoshiharu Ohno, Yasuko Fujisawa, Naoki Sugihara, Yuji Kishida, Hisanobu Koyama, Shinichiro Seki, Takeshi Yoshikawa
    Acta radiologica (Stockholm, Sweden : 1987) 60(12) 1619-1628 2019年12月  

MISC

 73

講演・口頭発表等

 396

共同研究・競争的資金等の研究課題

 11