研究者業績

河合 聡人

kawai akito

基本情報

所属
藤田医科大学 医学部 医学科 講師
学位
博士(薬学)(熊本大学)

研究者番号
20435150
ORCID ID
 https://orcid.org/0000-0001-5695-8814
J-GLOBAL ID
201801011554970796
researchmap会員ID
7000023585

外部リンク

経歴

 5

論文

 19
  • Akito Kawai, William C. Shropshire, Masahiro Suzuki, Jovan Borjan, Samuel L. Aitken, William C. Bachman, Christi L. McElheny, Micah M. Bhatti, Ryan K. Shields, Samuel A. Shelburne, Yohei Doi
    mBio 15(2) e02874-23 2024年2月14日  
    Ceftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Enterobacterales including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated β-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how β-lactamases may incrementally alter their structures to escape multiple advanced β-lactam agents.
  • William C Shropshire, Bradley T Endres, Jovan Borjan, Samuel L Aitken, William C Bachman, Christi L McElheny, Chin-Ting Wu, Stephanie L Egge, Ayesha Khan, William R Miller, Micah M Bhatti, Pranoti Saharasbhojane, Akito Kawai, Ryan K Shields, Samuel A Shelburne, Yohei Doi
    Journal of Antimicrobial Chemotherapy 78(10) 2442-2450 2023年8月14日  
    Abstract Objectives To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate. Methods A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of >256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY β-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance. Results WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY β-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam. Conclusions We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance.
  • Keishi Yamasaki, Honoka Teshima, Reina Yukizawa, Koki Kuyama, Kenji Tsukigawa, Koji Nishi, Masaki Otagiri, Akito Kawai
    Journal of Medicinal Chemistry 66(1) 951-961 2023年1月12日  
  • Akito Kawai, Yoshihiro Kobashigawa, Kenshiro Hirata, Hiroshi Morioka, Shuhei Imoto, Koji Nishi, Victor Tuan Giam Chuang, Keishi Yamasaki, Masaki Otagiri
    ACS Omega 7(34) 29944-29951 2022年8月30日  査読有り筆頭著者
    Aripiprazole (ARP), an antipsychotic drug, binds more strongly to human serum albumin (HSA) than the other ARP derivatives. In addition, the signs for the extrinsic Cotton effects for HSA complexed with ARP or deschloro-ARP are reversed. In this study, we report on a structural-chemical approach using circular dichroism (CD) spectroscopic analysis, X-ray crystallographic analysis, and molecular dynamics simulations. The objective was to examine the relationship between the induced CD spectra and the structural features of the HSA complexes with ARP or deschloro-ARP. The intensity of the induced CD spectra of the HSA complexes with ARP or deschloro-ARP was reduced with increasing temperature. We determined the crystal structure of the HSA complexed with deschloro-ARP in this study and compared it to HSA complexed with ARP that we reported previously. The comparison of these structures revealed that both ARP and deschloro-ARP were bound at the site II pocket in HSA and that the orientation of the molecules was nearly identical. Molecular dynamics simulations indicated that the molecular motions of ARP and deschloro-ARP within the site II pocket were different from one another and the proportion of stacking interaction formations of Tyr411 with the dihydroquinoline rings of ARP and deschloro-ARP was also different. These findings indicate that the induced CD spectra are related to the molecular motions and dynamic interactions of ARP and deschloro-ARP in HSA and may help to understand the molecular recognition and motion that occurs within the binding site for the other HSA ligands more clearly.
  • Kenshiro Hirata, Akito Kawai, Victor Tuan Giam Chuang, Keiki Sakurama, Koji Nishi, Keishi Yamasaki, Masaki Otagiri
    ACS Omega 7(5) 4413-4419 2022年2月8日  査読有り筆頭著者
    The effects of myristate on the induced circular dichroism spectra of aripiprazole (ARP) bound to human serum albumin (HSA) were investigated. High concentrations of myristate reversed the Cotton effects induced in the ARP-HSA system. The observed ellipticities increased with increasing drug concentration up to an ARP-to-HSA molar ratio of 1:1 and then decreased, indicating that the extrinsic Cotton effects were generated by the binding of ARP molecules to the high- and low-affinity sites in HSA. The data for the concentration of free ARP show that myristate displaces ARP molecules from HSA. Moreover, the free fractions of ARP in the ARP-HSA-myristate system increased significantly when adding fusidic acid, a subdomain IB ligand. In the crystal structure of the ARP-HSA-myristate ternary complex, one ARP molecule is bound to subdomain IB, and the interaction between the carbonyl group of ARP and the aromatic ring of Tyr138 in subdomain IB is essential for binding to occur. Meanwhile, the ARP molecule in the ARP-HSA binary complex structure is bound only to subdomain IIIA. Consequently, the inversion in the extrinsic Cotton effects in the ARP-HSA system can be attributed to the modification of the geometry within the binding pocket, in addition to the transfer of ARP from subdomain IIIA to subdomain IB through the displacement as a result of the binding of myristate to subdomain IIIA.
  • Akito Kawai, Masahiro Suzuki, Kentaro Tsukamoto, Yusuke Minato, Yohei Doi
    Antimicrobial Agents and Chemotherapy 65(10) 2021年7月26日  査読有り筆頭著者
    Post-translational methylation of the A site of 16S rRNA at position A1408 leads to pan-aminoglycoside resistance encompassing both 4,5- and 4,6-disubstituted 2-deoxystreptamine (DOS) aminoglycosides. To date, NpmA is the only acquired enzyme with such function. Here, we present function and structure of NpmB1 whose sequence was identified in <italic>Escherichia coli</italic> genomes registered from the United Kingdom. NpmB1 possesses 40% amino acid identity with NpmA1 and confers resistance to all clinically relevant aminoglycosides including 4,5-DOS agents. Phylogenetic analysis of NpmB1 and NpmB2, its single amino acid variant, revealed that the encoding gene was likely acquired by <italic>E. coli</italic> from a soil bacterium. The structure of NpmB1 suggests that it requires a structural change of the β6/7 linker in order to bind to 16S rRNA. These findings establish NpmB1 and NpmB2 as the second group of acquired pan-aminoglycoside resistance 16S rRNA methyltransferases.
  • Keishi Yamasaki, Akito Kawai, Keiki Sakurama, Nagiko Udo, Yuta Yoshino, Yuki Saito, Kenji Tsukigawa, Koji Nishi, Masaki Otagiri
    Molecular Pharmaceutics 18(3) 1061-1070 2021年1月21日  査読有り
    Benzbromarone has been used for the treatment of gout for more than 30 years. Although it shows a high level of binding to plasma proteins (>99%), our knowledge of this binding is not sufficiently extensive to permit us to understand its pharmacokinetics and pharmacodynamics. To address this issue in more detail, we characterized the binding of benzbromarone to human serum albumin (HSA), the most abundant protein in plasma. Equilibrium dialysis and circular dichroism findings indicated that benzbromarone binds strongly to one primary as well as to multiple secondary sites on HSA and that the bromine atoms of benzbromarone play important roles in this high affinity binding. An X-ray crystallographic study revealed that benzbromarone molecules bind to hydrophobic pockets within subdomains IB, IIA, and IIIA. Inhibition experiments using site specific ligands (subdomain IB; fusidic acid, IIA; warfarin, IIIA; diazepam) indicated that the primary and secondary binding sites that benzbromarone binds to are within subdomains IIIA and IB/IIA, respectively. Lastly, a study of the effect of fatty acids on the benzbromarone-HSA interaction suggested that benzbromarone, when displaced from subdomain IIIA by sodium oleate, could transfer to subdomains IB or IIA. Thus, these data will permit more relevant assessments of the displacement interactions of benzbromarone especially in cases of co-administered drugs or endogenous compounds that also bind to subdomain IIIA. In addition, the findings presented herein will also be useful for designing drug combination therapy in which pharmacokinetic and pharmacodynamic performance need to be controlled.
  • Ryan K. Shields, Alina Iovleva, Ellen G. Kline, Akito Kawai, Christi L. McElheny, Yohei Doi
    Clinical Infectious Diseases 71(10) 2713-2716 2020年11月15日  査読有り
    © The Author(s) 2020. We report 2 independent patients from whom carbapenem and ceftazidime-avibactam–resistant Enterobacter cloacae complex strains were identified. The ceftazidime-avibactam resistance was attributed to a 2–amino acid deletion in the R2 loop of AmpC β-lactamase, which concurrently caused resistance to cefepime and reduced susceptibility to cefiderocol, a novel siderophore cephalosporin.
  • Kentaro Tsukamoto, Naoaki Shinzawa, Akito Kawai, Masahiro Suzuki, Hiroyasu Kidoya, Nobuyuki Takakura, Hisateru Yamaguchi, Toshiki Kameyama, Hidehito Inagaki, Hiroki Kurahashi, Yasuhiko Horiguchi, Yohei Doi
    Nature Communications 11(1) 2020年7月16日  
    Abstract Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation.
  • Akito Kawai, Christi L. McElheny, Alina Iovleva, Ellen G. Kline, Nicolas Sluis-Cremer, Ryan K. Shields, Yohei Doi
    Antimicrobial Agents and Chemotherapy 64(7) e00198-20. 2020年4月13日  査読有り筆頭著者
    <title>ABSTRACT</title> Ceftazidime-avibactam and cefiderocol are two of the latest generation β-lactam agents that possess expanded activity against highly drug-resistant bacteria, including carbapenem-resistant <italic>Enterobacterales</italic>. Here, we show that structural changes in AmpC β-lactamases can confer reduced susceptibility to both agents. A multidrug-resistant <named-content content-type="genus-species">Enterobacter cloacae</named-content> clinical strain (Ent385) was found to be resistant to ceftazidime-avibactam and cefiderocol without prior exposure to either agent. The AmpC β-lactamase of Ent385 (AmpCEnt385) contained an alanine-proline deletion at positions 294 and 295 (A294_P295del) in the R2 loop. AmpCEnt385 conferred reduced susceptibility to ceftazidime-avibactam and cefiderocol when cloned into <named-content content-type="genus-species">Escherichia coli</named-content> TOP10. Purified AmpCEnt385 showed increased hydrolysis of ceftazidime and cefiderocol compared to AmpCEnt385Rev, in which the deletion was reverted. Comparisons of crystal structures of AmpCEnt385 and AmpCP99, the canonical AmpC of <named-content content-type="genus-species">E. cloacae</named-content> complex, revealed that the two-residue deletion in AmpCEnt385 induced drastic structural changes of the H-9 and H-10 helices and the R2 loop, which accounted for the increased hydrolysis of ceftazidime and cefiderocol. The potential for a single mutation in <italic>ampC</italic> to confer reduced susceptibility to both ceftazidime-avibactam and cefiderocol requires close monitoring.
  • Keiki Sakurama, Akito Kawai, Victor Tuan Giam Chuang, Yoko Kanamori, Miyu Osa, Kazuaki Taguchi, Hakaru Seo, Toru Maruyama, Shuhei Imoto, Keishi Yamasaki, Masaki Otagiri
    ACS Omega 3(10) 13790-13797 2018年10月22日  査読有り
    Copyright © 2018 American Chemical Society. Aripiprazole (ARP), a quinolinone derivative, is an atypical antipsychotic drug that is used in the treatment of schizophrenia. ARP has an extensive distribution and more than 99% of the ARP and dehydro-ARP, the main active metabolite, is bound to plasma proteins. However, information regarding the protein binding of ARP is limited. In this study, we report on a systematic study of the protein binding of ARP. The interaction of ARP and structurally related compounds with human serum albumin (HSA) was examined using equilibrium dialysis, circular dichroism (CD) spectroscopy, fluorescent probe displacement, and an X-ray crystallographic analysis. The binding affinities (nK) for ARP and its main metabolite, dehydro-ARP with HSA were found to be significantly higher than other structurally related compounds. The results of equilibrium dialysis experiments and CD spectral data indicated that the chloro-group linked to the phenylpiperazine ring in the ARP molecule plays a major role in the binding of these ligands to HSA. Furthermore, fluorescent probe displacement results indicated that ARP appears to bind at the site II pocket in subdomain III. A detailed CD spectral analysis suggests that the chloro-group linked to the phenylpiperazine ring may control the geometry of the ARP molecule when binding in the site II binding pocket. X-ray crystallographic analysis of the ARP-HSA complex revealed that the distance between the chlorine atom at the 3-positon of dichlorophenyl-piperazine on ARP and the sulfur atom of Cys392 in HSA was 3.4-3.6 Å. A similar halogen bond interaction has also been observed in the HSA structure complexed with diazepam, which also contains a chloro-group. Thus, the mechanism responsible for the binding of ARP to a protein elucidated here should be relevant for assessing the pharmacokinetics and pharmacodynamics of ARP in various clinical situations and for designing new drugs.
  • Akito Kawai, Keishi Yamasaki, Taisuke Enokida, Shuichi Miyamoto, Masaki Otagiri
    Biochemistry and Biophysics Reports 13 78-82 2018年3月  査読有り筆頭著者
    © 2018 The Authors Sodium 4-phenylbutyrate (PB) is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA) in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA–PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug–HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings.
  • Keishi Yamasaki, Taisuke Enokida, Kazuaki Taguchi, Shigeyuki Miyamura, Akito Kawai, Shuichi Miyamoto, Toru Maruyama, Hakaru Seo, Masaki Otagiri
    Journal of Pharmaceutical Sciences 106(9) 2860-2867 2017年9月  査読有り
    © 2017 American Pharmacists Association® Sodium 4-phenylbutyrate (PB) is clinically used as a drug for treating urea cycle disorders. Recent research has shown that PB also has other pharmacologic activities, suggesting that it has the potential for use as a drug for treating other disorders. In the process of drug development, preclinical testing using experimental animals is necessary to verify the efficacy and safety of PB. Although the binding of PB to human albumin has been studied, our knowledge of its binding to albumin from the other animal species is extremely limited. To address this issue, we characterized the binding of PB to albumin from several species (human, bovine, rabbit, and rat). The results indicated that PB interacts with 1 high-affinity site of albumin from these species, which corresponds to site II of human albumin. The affinities of PB to human and bovine albumins were higher than those to rabbit and rat albumin, and that to rabbit albumin was the lowest. Binding and molecular docking studies using structurally related compounds of PB suggested that species differences in the affinity are attributed to differences in the structural feature of the PB-binding sites on albumins (e.g., charge distribution, hydrophobicity, shape, or size).
  • Akito Kawai, Victor T.G. Chuang, Yosuke Kouno, Keishi Yamasaki, Shuichi Miyamoto, Makoto Anraku, Masaki Otagiri
    Biochimica et Biophysica Acta - Proteins and Proteomics 1865(8) 979-984 2017年8月  査読有り筆頭著者
    © 2017 Elsevier B.V. During pasteurization and storage of albumin products, Sodium octanoate (Oct) and N-acethyl-L-tryptophan (N-AcTrp) are used as the thermal stabilizer and the antioxidant for human serum albumin (HSA), respectively. We recently reported that N-acethyl-L-methionine (N-AcMet) is an antioxidant for HSA, which is superior to N-AcTrp when it is especially exposed to light during storage. The objective of the present study is to clarify the molecular mechanism responsible for the HSA protective effect of Oct and N-AcMet based on their ternary complex structure. Crystal structure of the HSA–Oct–N-AcMet complex showed that one N-AcMet molecule is bound to the entrance of drug site 1 of HSA, and its side chain, which is susceptible to the oxidation, is exposed to the solvent. At the same time, two Oct binding sites are observed in drug sites 1 and 2 of HSA, respectively, and each Oct molecule occupies the hydrophobic cavity in them. These results indicate the molecular mechanism responsible for the HSA stabilization by these small molecules as follows. N-AcMet seals the entrance of drug site 1 while it acts as an antioxidant for HSA. Oct is chiefly bound to drug site 2 of HSA and it increases the thermal stability of HSA because of the occupying the largest intra-cavity of sub-domain IIIA in HSA. These findings suggest that N-AcMet acts positively as useful stabilizer for albumin formulated products such as functionalized HSA and HSA fusion proteins.
  • Akito Kawai, Shigesada Higuchi, Masaru Tsunoda, Kazuo T. Nakamura, Yuriko Yamagata, Shuichi Miyamoto
    FEBS Letters 589(19) 2675-2682 2015年9月14日  査読有り筆頭著者責任著者
    © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Uracil-DNA glycosylases (UDGs) excise uracil from DNA by catalyzing the N-glycosidic bond hydrolysis. Here we report the first crystal structures of an archaeal UDG (stoUDG). Compared with other UDGs, stoUDG has a different structure of the leucine-intercalation loop, which is important for DNA binding. The stoUDG-DNA complex model indicated that Leu169, Tyr170, and Asn171 in the loop are involved in DNA intercalation. Mutational analysis showed that Tyr170 is critical for substrate DNA recognition. These results indicate that Tyr170 occupies the intercalation site formed after the structural change of the leucine-intercalation loop required for the catalysis.
  • Akito Kawai, Shigesada Higuchi, Masaru Tsunoda, Kazuo T. Nakamura, Shuichi Miyamoto
    Acta Crystallographica Section F: Structural Biology and Crystallization Communications 68(9) 1102-1105 2012年9月  査読有り筆頭著者
    Uracil-DNA glycosylase (UDG) specifically removes uracil from DNA by catalyzing hydrolysis of the N-glycosidic bond, thereby initiating the base-excision repair pathway. Although a number of UDG structures have been determined, the structure of archaeal UDG remains unknown. In this study, a deletion mutant of UDG isolated from Sulfolobus tokodaii strain 7 (stoUDG) and stoUDG complexed with uracil were crystallized and analyzed by X-ray crystallography. The crystals were found to belong to the orthorhombic space group P212121, with unit-cell parameters a = 52.2, b = 52.3, c = 74.7 Å and a = 52.1, b = 52.2, c = 74.1 Å for apo stoUDG and stoUDG complexed with uracil, respectively. © 2012 International Union of Crystallography.
  • Akito Kawai, Hiroshi Hashimoto, Shigesada Higuchi, Masaru Tsunoda, Mamoru Sato, Kazuo T. Nakamura, Shuichi Miyamoto
    Journal of Structural Biology 174(3) 443-450 2011年6月  査読有り筆頭著者
    Proliferating cell nuclear antigen (PCNA) is a key protein that orchestrates the arrangement of DNA-processing proteins on DNA during DNA metabolism. In crenarchaea, PCNA forms a heterotrimer (PCNA123) consisting of PCNA1, PCNA2, and PCNA3, while in most eukaryotes and many archaea PCNAs form a homotrimer. Interestingly, unique oligomeric PCNAs from Sulfolobus tokodaii were reported in which PCNA2 and PCNA3 form a heterotrimer without PCNA1. In this paper, we describe the crystal structure of the stoPCNA2- stoPCNA3 complex. While most DNA sliding clamps form ring-shaped structures, our crystal structure showed an elliptic ring-like heterotetrameric complex, differing from a previous reports. Furthermore, we investigated the composition and the dimension of the stoPCNA2- stoPCNA3 complex in the solution using gel-filtration column chromatography and small-angle X-ray scattering analyses, respectively. These results indicate that stoPCNA2 and stoPCNA3 form the heterotetramer in solution. Based on our heterotetrameric structure, we propose a possible biological role for the heterotetrameric complex as a Holliday junction clamp. © 2011 Elsevier Inc.
  • Shuichi Miyamoto, Akito Kawai, Shigesada Higuchi, Yuki Nishi, Toshiko Tanimoto, Yukiko Uekaji, Daisuke Nakata, Hiroshi Fukumi, Keiji Terao
    Chem-Bio Informatics Journal 9(1) 1-11 2009年  査読有り
    The stability, dispersibility and oral bioavailability of coenzyme Q10 (CoQ10) are known to be improved upon complexing CoQ10 with γ-cyclodextrin (γ-CD). However, the details of the three-dimensional structure of the γ-CD/CoQ10 complex are not well understood. Therefore, the molecular composition and three-dimensional structure of the complex were investigated using chemical analyses and molecular modeling. The molecular ratio of γ-CD and CoQ10 in the complex was investigated by NMR as well as by HPLC to determine the γ-CD/CoQ10 ratio of 2.5. DSC analysis of the γ-CD/CoQ10 complex indicated formation of the inclusion complex. Three different complex models (γ-CDx2+CoQ10; γ-CDx3+CoQ10; γ-CDx5+CoQ10x2) that correspond to the derived γ-CD/CoQ10 ratio were also constructed and then molecular mechanics and dynamics calculations were carried out to provide several possible complex structures. Based on the complex structures thus obtained, structural and energetic features of the complexes were examined. © 2009 Chem-Bio Informatics Society.
  • Akito Kawai, Shigesada Higuchi, Masaru Tsunoda, Kazuo T. Nakamura, Shuichi Miyamoto
    Acta Crystallographica Section F: Structural Biology and Crystallization Communications 65(12) 1282-1284 2009年  査読有り筆頭著者
    Crenarchaeal PCNA is known to consist of three subunits (PCNA1, PCNA2 and PCNA3) that form a heterotrimer (PCNA123). Recently, another heterotrimeric PCNA composed of only PCNA2 and PCNA3 was identified in Sulfolobus tokodaii strain 7 (stoPCNAs). In this study, the purified stoPCNA2-stoPCNA3 complex was crystallized by hanging-drop vapour diffusion. The crystals obtained belonged to the orthorhombic space groups I222 and P21212, with unit-cell parameters a = 91.1, b = 111.8, c = 170.9 Å and a = 91.1, b = 160.6, c = 116.6 Å, respectively. X-ray diffraction data sets were collected to 2.90 Å resolution for the I222 crystals and to 2.80 Å resolution for the P21212 crystals. © 2009 International Union of Crystallography All rights reserved.

MISC

 10

講演・口頭発表等

 31

担当経験のある科目(授業)

 6

所属学協会

 4

共同研究・競争的資金等の研究課題

 9

その他

 2
  • ①タンパク質の動的な解析 *本研究ニーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで
  • ①薬剤や核酸、タンパク質の構造解析(組換えタンパク質の調製からX線結晶構造解析法を用いた構造決定まで実施しています。) *本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進センター(fuji-san@fujita-hu.ac.jp)まで