Institute for Comprehensive Medical Science

Keisuke Hitachi

  (常陸 圭介)

Profile Information

Affiliation
Senior Assistant Professor, Center for Medical Science, Fujita Health University
Degree
Ph.D.(The University of Tokyo)

Contact information
hkeisukefujita-hu.ac.jp
Researcher number
10508469
ORCID ID
 https://orcid.org/0000-0002-7300-5238
J-GLOBAL ID
200901097490734327
researchmap Member ID
6000011163

External link

The role of ncRNA (microRNA and lncRNA) and enzymes (DUB etc) in skeletal muscle differentiation, hypertrophy, and atrophy.

Papers

 59
  • Setsuko Komatsu, Azzahrah Diniyah, Wei Zhu, Masataka Nakano, Shafiq Ur Rehman, Hisateru Yamaguchi, Keisuke Hitachi, Kunihiro Tsuchida
    International journal of molecular sciences, 25(15), Jul 27, 2024  Peer-reviewed
    Salt stress is a serious problem, because it reduces the plant growth and seed yield of wheat. To investigate the salt-tolerant mechanism of wheat caused by plant-derived smoke (PDS) solution, metabolomic and proteomic techniques were used. PDS solution, which repairs the growth inhibition of wheat under salt stress, contains metabolites related to flavonoid biosynthesis. Wheat was treated with PDS solution under salt stress and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins were associated with protein metabolism and signal transduction in biological processes, as well as mitochondrion, endoplasmic reticulum/Golgi, and plasma membrane in cellular components with PDS solution under salt stress compared to control. Using immuno-blot analysis, proteomic results confirmed that ascorbate peroxidase increased with salt stress and decreased with additional PDS solution; however, H+-ATPase displayed opposite effects. Ubiquitin increased with salt stress and decreased with additional PDS solution; nevertheless, genomic DNA did not change. As part of mitochondrion-related events, the contents of ATP increased with salt stress and recovered with additional PDS solution. These results suggest that PDS solution enhances wheat growth suppressed by salt stress through the regulation of energy metabolism and the ubiquitin-proteasome system related to flavonoid metabolism.
  • Setsuko Komatsu, Taiki Kimura, Shafiq Ur Rehman, Hisateru Yamaguchi, Keisuke Hitachi, Kunihiro Tsuchida
    International journal of molecular sciences, 24(18), Sep 6, 2023  Peer-reviewed
    Salt stress of soybean is a serious problem because it reduces plant growth and seed yield. To investigate the salt-tolerant mechanism of soybean, a plant-derived smoke (PDS) solution was used. Three-day-old soybeans were subjected to PDS solution under 100 mM NaCl for 2 days, resulting in PDS solution improving soybean root growth, even under salt stress. Under the same condition, proteins were analyzed using the proteomic technique. Differential abundance proteins were associated with transport/formaldehyde catabolic process/sucrose metabolism/glutathione metabolism/cell wall organization in the biological process and membrane/Golgi in the cellular component with or without PDS solution under salt stress. Immuno-blot analysis confirmed that osmotin, alcohol dehydrogenase, and sucrose synthase increased with salt stress and decreased with additional PDS solution; however, H+ATPase showed opposite effects. Cellulose synthase and xyloglucan endotransglucosylase/hydrolase increased with salt and decreased with additional PDS solution. Furthermore, glycoproteins decreased with salt stress and recovered with additional treatment. As mitochondrion-related events, the contents of ATP and gamma-aminobutyric acid increased with salt stress and recovered with additional treatment. These results suggest that PDS solution improves the soybean growth by alleviating salt stress. Additionally, the regulation of energy metabolism, protein glycosylation, and cell wall construction might be an important factor for the acquisition of salt tolerance in soybean.
  • Atsushi Kubo, Keisuke Hitachi, Ryutaro Shirakawa, Toshihiko Ogura
    Aug 10, 2023  
  • Shinji Ueno, Yusuke Seino, Shihomi Hidaka, Masashi Nakatani, Keisuke Hitachi, Naoya Murao, Yasuhiro Maeda, Haruki Fujisawa, Megumi Shibata, Takeshi Takayanagi, Katsumi Iizuka, Daisuke Yabe, Yoshihisa Sugimura, Kunihiro Tsuchida, Yoshitaka Hayashi, Atsushi Suzuki
    Journal of diabetes investigation, Jun 9, 2023  Peer-reviewed
    AIMS/INTRODUCTION: Glucagon is secreted from pancreatic α-cells and plays an important role in amino acid metabolism in liver. Various animal models deficient in glucagon action show hyper-amino acidemia and α-cell hyperplasia, indicating that glucagon contributes to feedback regulation between the liver and the α-cells. In addition, both insulin and various amino acids, including branched-chain amino acids and alanine, participate in protein synthesis in skeletal muscle. However, the effect of hyperaminoacidemia on skeletal muscle has not been investigated. In the present study, we examined the effect of blockade of glucagon action on skeletal muscle using mice deficient in proglucagon-derived peptides (GCGKO mice). MATERIALS AND METHODS: Muscles isolated from GCGKO and control mice were analyzed for their morphology, gene expression and metabolites. RESULTS: GCGKO mice showed muscle fiber hypertrophy, and a decreased ratio of type IIA and an increased ratio of type IIB fibers in the tibialis anterior. The expression levels of myosin heavy chain (Myh) 7, 2, 1 and myoglobin messenger ribonucleic acid were significantly lower in GCGKO mice than those in control mice in the tibialis anterior. GCGKO mice showed a significantly higher concentration of arginine, asparagine, serine and threonine in the quadriceps femoris muscles, and also alanine, aspartic acid, cysteine, glutamine, glycine and lysine, as well as four amino acids in gastrocnemius muscles. CONCLUSIONS: These results show that hyperaminoacidemia induced by blockade of glucagon action in mice increases skeletal muscle weight and stimulates slow-to-fast transition in type II fibers of skeletal muscle, mimicking the phenotype of a high-protein diet.
  • Masahide Harada, Daisuke Okuzaki, Akemi Yamauchi, Shiho Ishikawa, Yoshihiro Nomura, Asuka Nishimura, Yuji Motoike, Masayuki Koshikawa, Keisuke Hitachi, Kunihiro Tsuchida, Kentaro Amano, Atsuo Maekawa, Yasushi Takagi, Eiichi Watanabe, Yukio Ozaki, Hideo Izawa
    PloS one, 18(4) e0283942, 2023  Peer-reviewed
    BACKGROUND: Circulating microRNAs (miRNAs, miR) have been considered as biomarkers reflecting the underlying pathophysiology in atrial fibrillation (AF). Nevertheless, miRNA expression in the peripheral blood samples might not reflect a cardiac phenomenon since most miRNAs are expressed in numerous organs. This study aimed to identify the cardiac-specific circulating miRNAs as biomarkers for AF. METHODS: Plasma samples were obtained from a luminal coronary sinus catheter (CS, cardiac-specific samples) and femoral venous sheath (FV, peripheral samples) in patients with AF and paroxysmal supraventricular tachycardia (control, CTL) undergoing catheter ablation. The circulating miRNA profiles were analyzed by small RNA sequencing. Differently expressed miRNAs between AF and CTL were identified in each sample of the CS and FV; miRNAs exhibiting similar expression patterns in the CS and FV samples were selected as candidates for cardiac-specific biomarkers. The selected miRNAs were related to the outcome of catheter ablation of AF. RESULTS: Small RNA sequencing detected 849 miRNAs. Among the top 30 most differently expressed miRNAs between AF and CTL, circulating hsa-miR-20b-5p, hsa-miR-330-3p, and hsa-miR-204-5p had a similar pattern in the CS and FV samples. Another set of peripheral blood samples was obtained from AF patients undergoing catheter ablation (n = 141). The expression of the miR-20b-5p and miR-330-3p, but not the miR-204-5p, negatively correlated with the echocardiographic left-atrial dimension and was decreased in patients with AF recurrence as compared to those without AF recurrence during a 1-year follow-up. CONCLUSION: Circulating miR-20b-5p and miR-330-3p can be cardiac-specific biomarkers for atrial remodeling progression and arrhythmia recurrence after catheter ablation in AF patients.

Misc.

 1

Books and Other Publications

 3

Presentations

 68

Teaching Experience

 10

Professional Memberships

 2

Research Projects

 25

Industrial Property Rights

 1

Academic Activities

 5

Social Activities

 4

Other

 1

その他教育活動上特記すべき事項

 24
  • 件名(英語)
    藤田保健衛生大学医療科学部第2回FD講演会
    終了年月日(英語)
    2015/06/02
    概要(英語)
    「高大連結の状況について」に参加
  • 件名(英語)
    2014年 藤田保健衛生大学大学院医学研究科・医学セミナー
    概要(英語)
    骨格筋細胞の分化における長鎖非コードRNAによる転写調節機構の解析
  • 件名(英語)
    2012年 医療科学部卒業研究指導
    概要(英語)
    「骨格筋の分化におけるmicroRNAの役割の解析」
  • 件名(英語)
    2011年 医療科学部卒業研究指導
    概要(英語)
    「骨格筋の分化に関与する新規microRNAの探索」
  • 件名(英語)
    2011年 藤田保健衛生大学大学院医学研究科・医学セミナー
    概要(英語)
    マイオスタチン欠損骨格筋肥大におけるmicroRNAの解析
  • 件名(英語)
    2017年 アセンブリ2活動
    概要(英語)
    サイエンスカフェ
  • 件名(英語)
    2017年 医療科学部卒業研究指導
    概要(英語)
    「骨格筋細胞を用いた筋量調節に関わる脱ユビキチン化酵素の探索」
  • 件名(英語)
    2013年 医療科学部卒業研究指導
    概要(英語)
    「筋分化過程におけるmyogenin遺伝子転写調節領域のメチル化解析」
  • 件名(英語)
    2014年 基礎医学体験実習指導
    概要(英語)
    実験の指導
  • 件名(英語)
    2014年 サマースチューデント指導
    概要(英語)
    医学部大学院生の研究指導
  • 件名(英語)
    2015年 アセンブリ1活動
    概要(英語)
    インターネットチュートリアル
  • 件名(英語)
    2015年 医療科学部卒業研究指導2名
    概要(英語)
    「医学応用を目指した骨格筋の肥大・萎縮制御に関わる有用分泌因子の探索」
  • 件名(英語)
    2019年 医療科学部卒業研究指導
    開始年月日(英語)
    2019/06/01
    終了年月日(英語)
    2019/10/20
  • 件名(英語)
    2016年 医療科学部卒業研究指導2名
    概要(英語)
    「骨格筋の肥大・萎縮における長鎖ノンコーディングRNAの発現探索」
  • 件名(英語)
    2016年 基礎医学体験実習指導2名
    概要(英語)
    実験の指導
  • 件名(英語)
    2016年 アセンブリ1活動
    概要(英語)
    インターネットチュートリアル
  • 件名(英語)
    2016年 藤田保健衛生大学総医研・最先端医学研究セミナー・大学院医学研究科医学セミナー
    概要(英語)
    転写調節領域由来長鎖ノンコーディングRNAを介した遺伝子発現制御機構の解析
  • 件名(英語)
    2017年 医療科学部卒業研究指導
    概要(英語)
    「定量的RT-PCRを用いた骨格筋の肥大・萎縮時における長鎖非コードRNAの発現変動 の解析」
  • 件名(英語)
    2018年 アセンブリ2活動
    概要(英語)
    サイエンスカフェ
  • 件名(英語)
    藤田保健衛生大学大学院保健学研究科FD研修講演会
    概要(英語)
    「鳥取大学医学部における産学連携教育"発明楽"による発想力育成教育の実践」に参加