総合医科学研究所 遺伝子発見機構学
Profile Information
- Affiliation
- Senior Assistant Professor, Center for Medical Science, Fujita Health University
- Degree
- Ph.D.(The University of Tokyo)
- Contact information
- hkeisuke
fujita-hu.ac.jp - Researcher number
- 10508469
- ORCID ID
https://orcid.org/0000-0002-7300-5238- J-GLOBAL ID
- 200901097490734327
- researchmap Member ID
- 6000011163
- External link
The role of ncRNA (microRNA and lncRNA) and enzymes (DUB etc) in skeletal muscle differentiation, hypertrophy, and atrophy.
Research Interests
18Research Areas
3Research History
4Committee Memberships
5-
Jan, 2026 - Present
-
Jun, 2023 - Present
-
Jan, 2021 - Present
-
Sep, 2020 - Present
-
Apr, 2020 - Present
Awards
6Papers
65-
Scientific reports, 15(1) 43802-43802, Dec 15, 2025 Peer-reviewedSmall extracellular vesicles (sEVs) mediate cell-to-cell communication by carrying RNAs and proteins. Ubiquitin-like 3 (UBL3) functions as a posttranslational modification factor, regulating protein sorting to sEVs. Programmed cell death ligand 1 (PD-L1) binds to programmed cell death 1 (PD-1) on immune cells, suppressing their function. Although immune checkpoint inhibitors, anti-PD-L1 and anti-PD-1 antibodies, have improved cancer treatment, efficacy remains limited (~ 25%). Per recent studies, PD-L1-containing sEVs are elevated in cancer patients, contributing to impaired immunotherapy responses. Herein, we discovered that PD-L1 is modified by UBL3 and that its sorting to sEVs is regulated by UBL3. Furthermore, we found that statins, commonly prescribed for hypercholesterolemia, inhibit UBL3 modification, thereby reducing PD-L1 sorting to sEVs. Among patients with a high tumor proportion score, serum levels of PD-L1-containing sEVs were significantly lower in those using statins. Consistently, bioinformatic analysis revealed that UBL3 and PD-L1 expression levels affect lung cancer survival. Integrating statins into existing combination therapies may therefore offer a promising strategy to enhance immunotherapy efficacy.
-
Acta neuropathologica communications, 14(1) 4-4, Nov 29, 2025 Peer-reviewedLower grade gliomas frequently harbor mutations in isocitrate dehydrogenase (IDH), which define biologically distinct tumor subtypes. Although IDH-mutant and IDH-wildtype gliomas share similar histological morphology, they display markedly different metabolic profiles that may be exploited for targeted therapy. In this study, we investigated therapeutic approaches tailored to these metabolic differences. Using capillary electrophoresis-mass spectrometry, we compared the metabolomes of engineered IDH-wildtype and IDH-mutant glioma cell models. IDH-mutant cells exhibited elevated asparagine levels and reduced glutamine and glutamate levels compared with IDH-wildtype cells. These differences were corroborated in vivo by proton magnetic resonance spectroscopy of 130 patients with diffuse gliomas, showing lower glutamine and glutamate in IDH-mutant tumors. Pharmacological depletion of asparagine with L-asparaginase, which converts asparagine to aspartate, preferentially inhibited the growth of IDH-wildtype glioma cells, and this effect was potentiated by inhibition of asparagine synthetase. In contrast, inhibition of glutamate dehydrogenase 1 (GLUD1), the enzyme catalyzing the conversion of glutamate to α-ketoglutarate, selectively suppressed proliferation of IDH-mutant glioma cells by inducing reactive oxygen species accumulation and apoptosis. In vivo, L-asparaginase suppressed tumor growth in xenografted IDH-wildtype gliomas, whereas GLUD1 inhibition significantly reduced tumor growth in IDH-mutant glioma xenografts. These findings reveal distinct amino acid metabolic vulnerabilities defined by IDH mutation status and identify L-asparaginase and GLUD1 inhibition (via R162) as promising, mutation-specific therapeutic strategies. L-asparaginase demonstrated potent antitumor activity against IDH-wildtype gliomas, while GLUD1 inhibition selectively suppressed IDH-mutant gliomas both in vitro and in vivo. These results highlight the clinical potential of targeting amino acid metabolism in gliomas and provide a strong rationale for translating these mutation-specific approaches into future clinical trials.
-
Oxygen, 5(2) 4, Apr 18, 2025 Peer-reviewed
-
Cells, 14(7), Apr 3, 2025 Peer-reviewedThe role of a simulated microgravity environment on soybean growth was investigated. The root grew more under simulated microgravity conditions than in the presence of gravity. However, root shortening due to salt stress did not occur in simulated microgravity conditions. To reveal these mechanisms by simulated microgravity environment on soybean root, a proteomic analysis was conducted. Proteomic analysis revealed that among 1547 proteins, the abundances of proteins related to phytohormone, oxidative stress, ubiquitin/proteasome system, cell organization, and cell wall organization were altered under stimulated microgravity compared with gravity. Membrane-localized proteins and redox-related proteins were inversely correlated in protein numbers due to salt stress under gravity and the simulated microgravity condition. Proteins identified by proteomics were validated for protein accumulation by immunoblot analysis. Superoxide dismutase and ascorbate peroxidases, which are reactive oxygen species-scavenging proteins, increased in soybean root under salt stress but not in the simulated microgravity conditions even under stress. The accumulation of 45 kDa aquaporin and 70 kDa calnexin in soybean root under salt stress were increased in the simulated microgravity conditions compared to gravity. These findings suggest that soybean growth under salt stress may be regulated through improved water permeability, mitigation of reactive oxygen species production, and restoration of protein folding under simulated microgravity conditions.
-
Journal of Proteome Data and Methods, 7 2, Apr, 2025 Peer-reviewedLead authorCorresponding author
Misc.
1-
Biomedical Advances, Jul, 2017 InvitedEditors' Picks in Musculoskeletal Disorder, 2017 #9
Books and Other Publications
4-
The Chemical Biology of Long Noncoding RNAs. RNA Technologies, vol 11. Springer, Cham., Oct, 2020 (ISBN: 9783030447427)
-
Myostatin: Structure, Role in Muscle Development and Health Implications. Nova Science publishers, 2016 (ISBN: 9781634852487)
Presentations
81Teaching Experience
10-
アセンブリII (実験分子医学研究 Nature を読んでみよう) (藤田医科大学)
-
生命科学総合講義I (明治大学)
-
医学セミナー (藤田保健衛生大学)
-
アセンブリⅡ(サイエンスカフェ) (藤田保健衛生大学)
-
アセンブリⅠ(インターネットチュートリアル) (藤田保健衛生大学)
Research Projects
27-
科学研究費助成事業, 日本学術振興会, Apr, 2025 - Mar, 2029
-
科学研究費助成事業, 日本学術振興会, Apr, 2024 - Mar, 2027
-
科学研究費助成事業, 日本学術振興会, Jun, 2024 - Mar, 2027
-
科学研究費助成事業, 日本学術振興会, Apr, 2023 - Mar, 2026
-
2024年度 医学系研究奨励, 公益財団法人 武田科学振興財団, Jul, 2024 - Mar, 2026
Industrial Property Rights
1Academic Activities
7-
Planning, Management, etc., Panel moderator, Session chair, etc., Review, evaluationThe 48th annual meeting of the Molecular Biology Society of Japan (MBSJ), Dec 3, 2025
-
Planning, Management, etc., Panel moderator, Session chair, etc.The 47th annual meeting of the Molecular Biology Society of Japan (MBSJ), Nov 29, 2024
-
Planning, Management, etc., Panel moderator, Session chair, etc.AOMC-JMS 2024, Sep 13, 2024 - Sep 13, 2024
-
Planning, Management, etc., Panel moderator, Session chair, etc.The 46th annual meeting of the Molecular Biology Society of Japan (MBSJ), Dec 7, 2023
-
Planning, Management, etc., Panel moderator, Session chair, etc.The 45th annual meeting of the Molecular Biology Society of Japan (MBSJ), Nov 30, 2022
Social Activities
4Media Coverage
4-
EurekAlert!, Dec, 2022 Internet
-
EurekAlert!, Mar, 2022 Internet
Other
1その他教育活動上特記すべき事項
24-
件名(英語)2020年 アセンブリ2活動開始年月日(英語)2020/04/01終了年月日(英語)2020/11/30
-
件名(英語)2020年度 医学部医学研究演習開始年月日(英語)2020/02/03終了年月日(英語)2021/02/26
-
件名(英語)2019年 医療科学部卒業研究指導開始年月日(英語)2019/06/01終了年月日(英語)2019/10/20
-
件名(英語)2018年 医療科学部卒業研究指導概要(英語)「ヒトMettl21e相同遺伝子が偽遺伝子に変化した要因の同定」
-
件名(英語)藤田保健衛生大学医学部FD講演会概要(英語)「良い講義について ~殿堂入りした教員が教える講義の秘訣~」参加
-
件名(英語)藤田保健衛生大学大学院保健学研究科FD研修講演会概要(英語)「鳥取大学医学部における産学連携教育"発明楽"による発想力育成教育の実践」に参加
-
件名(英語)2018年 アセンブリ2活動概要(英語)サイエンスカフェ
-
件名(英語)2017年 医療科学部卒業研究指導概要(英語)「定量的RT-PCRを用いた骨格筋の肥大・萎縮時における長鎖非コードRNAの発現変動 の解析」
-
件名(英語)2017年 医療科学部卒業研究指導概要(英語)「骨格筋細胞を用いた筋量調節に関わる脱ユビキチン化酵素の探索」
-
件名(英語)2017年 アセンブリ2活動概要(英語)サイエンスカフェ
-
件名(英語)2016年 藤田保健衛生大学総医研・最先端医学研究セミナー・大学院医学研究科医学セミナー概要(英語)転写調節領域由来長鎖ノンコーディングRNAを介した遺伝子発現制御機構の解析
-
件名(英語)2016年 アセンブリ1活動概要(英語)インターネットチュートリアル
-
件名(英語)2016年 医療科学部卒業研究指導2名概要(英語)「骨格筋の肥大・萎縮における長鎖ノンコーディングRNAの発現探索」
-
件名(英語)2016年 基礎医学体験実習指導2名概要(英語)実験の指導
-
件名(英語)2015年 医療科学部卒業研究指導2名概要(英語)「医学応用を目指した骨格筋の肥大・萎縮制御に関わる有用分泌因子の探索」
-
件名(英語)2015年 アセンブリ1活動概要(英語)インターネットチュートリアル
-
件名(英語)藤田保健衛生大学医療科学部第2回FD講演会終了年月日(英語)2015/06/02概要(英語)「高大連結の状況について」に参加
-
件名(英語)2014年 サマースチューデント指導概要(英語)医学部大学院生の研究指導
-
件名(英語)2014年 基礎医学体験実習指導概要(英語)実験の指導
-
件名(英語)2014年 藤田保健衛生大学大学院医学研究科・医学セミナー概要(英語)骨格筋細胞の分化における長鎖非コードRNAによる転写調節機構の解析