研究者業績

常陸 圭介

ヒタチ ケイスケ  (Keisuke Hitachi)

基本情報

所属
藤田医科大学 医科学研究センター 難病治療学 講師
学位
博士(学術)(東京大学)

連絡先
hkeisukefujita-hu.ac.jp
研究者番号
10508469
ORCID ID
 https://orcid.org/0000-0002-7300-5238
J-GLOBAL ID
200901097490734327
researchmap会員ID
6000011163

外部リンク

筋肥大・筋萎縮、筋分化におけるノンコーディングRNA(microRNAや長鎖非コードRNA)や酵素(メチル化酵素やDUB)の機能解析と応用、骨格筋におけるマイオスタチンの作用機序の研究をしています。

論文

 57
  • Setsuko Komatsu, Taiki Kimura, Shafiq Ur Rehman, Hisateru Yamaguchi, Keisuke Hitachi, Kunihiro Tsuchida
    International journal of molecular sciences 24(18) 2023年9月6日  
    Salt stress of soybean is a serious problem because it reduces plant growth and seed yield. To investigate the salt-tolerant mechanism of soybean, a plant-derived smoke (PDS) solution was used. Three-day-old soybeans were subjected to PDS solution under 100 mM NaCl for 2 days, resulting in PDS solution improving soybean root growth, even under salt stress. Under the same condition, proteins were analyzed using the proteomic technique. Differential abundance proteins were associated with transport/formaldehyde catabolic process/sucrose metabolism/glutathione metabolism/cell wall organization in the biological process and membrane/Golgi in the cellular component with or without PDS solution under salt stress. Immuno-blot analysis confirmed that osmotin, alcohol dehydrogenase, and sucrose synthase increased with salt stress and decreased with additional PDS solution; however, H+ATPase showed opposite effects. Cellulose synthase and xyloglucan endotransglucosylase/hydrolase increased with salt and decreased with additional PDS solution. Furthermore, glycoproteins decreased with salt stress and recovered with additional treatment. As mitochondrion-related events, the contents of ATP and gamma-aminobutyric acid increased with salt stress and recovered with additional treatment. These results suggest that PDS solution improves the soybean growth by alleviating salt stress. Additionally, the regulation of energy metabolism, protein glycosylation, and cell wall construction might be an important factor for the acquisition of salt tolerance in soybean.
  • Shinji Ueno, Yusuke Seino, Shihomi Hidaka, Masashi Nakatani, Keisuke Hitachi, Naoya Murao, Yasuhiro Maeda, Haruki Fujisawa, Megumi Shibata, Takeshi Takayanagi, Katsumi Iizuka, Daisuke Yabe, Yoshihisa Sugimura, Kunihiro Tsuchida, Yoshitaka Hayashi, Atsushi Suzuki
    Journal of diabetes investigation 2023年6月9日  
    AIMS/INTRODUCTION: Glucagon is secreted from pancreatic α-cells and plays an important role in amino acid metabolism in liver. Various animal models deficient in glucagon action show hyper-amino acidemia and α-cell hyperplasia, indicating that glucagon contributes to feedback regulation between the liver and the α-cells. In addition, both insulin and various amino acids, including branched-chain amino acids and alanine, participate in protein synthesis in skeletal muscle. However, the effect of hyperaminoacidemia on skeletal muscle has not been investigated. In the present study, we examined the effect of blockade of glucagon action on skeletal muscle using mice deficient in proglucagon-derived peptides (GCGKO mice). MATERIALS AND METHODS: Muscles isolated from GCGKO and control mice were analyzed for their morphology, gene expression and metabolites. RESULTS: GCGKO mice showed muscle fiber hypertrophy, and a decreased ratio of type IIA and an increased ratio of type IIB fibers in the tibialis anterior. The expression levels of myosin heavy chain (Myh) 7, 2, 1 and myoglobin messenger ribonucleic acid were significantly lower in GCGKO mice than those in control mice in the tibialis anterior. GCGKO mice showed a significantly higher concentration of arginine, asparagine, serine and threonine in the quadriceps femoris muscles, and also alanine, aspartic acid, cysteine, glutamine, glycine and lysine, as well as four amino acids in gastrocnemius muscles. CONCLUSIONS: These results show that hyperaminoacidemia induced by blockade of glucagon action in mice increases skeletal muscle weight and stimulates slow-to-fast transition in type II fibers of skeletal muscle, mimicking the phenotype of a high-protein diet.
  • Masahide Harada, Daisuke Okuzaki, Akemi Yamauchi, Shiho Ishikawa, Yoshihiro Nomura, Asuka Nishimura, Yuji Motoike, Masayuki Koshikawa, Keisuke Hitachi, Kunihiro Tsuchida, Kentaro Amano, Atsuo Maekawa, Yasushi Takagi, Eiichi Watanabe, Yukio Ozaki, Hideo Izawa
    PloS one 18(4) e0283942 2023年  
    BACKGROUND: Circulating microRNAs (miRNAs, miR) have been considered as biomarkers reflecting the underlying pathophysiology in atrial fibrillation (AF). Nevertheless, miRNA expression in the peripheral blood samples might not reflect a cardiac phenomenon since most miRNAs are expressed in numerous organs. This study aimed to identify the cardiac-specific circulating miRNAs as biomarkers for AF. METHODS: Plasma samples were obtained from a luminal coronary sinus catheter (CS, cardiac-specific samples) and femoral venous sheath (FV, peripheral samples) in patients with AF and paroxysmal supraventricular tachycardia (control, CTL) undergoing catheter ablation. The circulating miRNA profiles were analyzed by small RNA sequencing. Differently expressed miRNAs between AF and CTL were identified in each sample of the CS and FV; miRNAs exhibiting similar expression patterns in the CS and FV samples were selected as candidates for cardiac-specific biomarkers. The selected miRNAs were related to the outcome of catheter ablation of AF. RESULTS: Small RNA sequencing detected 849 miRNAs. Among the top 30 most differently expressed miRNAs between AF and CTL, circulating hsa-miR-20b-5p, hsa-miR-330-3p, and hsa-miR-204-5p had a similar pattern in the CS and FV samples. Another set of peripheral blood samples was obtained from AF patients undergoing catheter ablation (n = 141). The expression of the miR-20b-5p and miR-330-3p, but not the miR-204-5p, negatively correlated with the echocardiographic left-atrial dimension and was decreased in patients with AF recurrence as compared to those without AF recurrence during a 1-year follow-up. CONCLUSION: Circulating miR-20b-5p and miR-330-3p can be cardiac-specific biomarkers for atrial remodeling progression and arrhythmia recurrence after catheter ablation in AF patients.
  • Keisuke Hitachi, Yuri Kiyofuji, Hisateru Yamaguchi, Masashi Nakatani, Masafumi Inui, Kunihiro Tsuchida
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology 37(1) e22692 2023年1月  査読有り筆頭著者責任著者
    The skeletal muscle myosin heavy chain (MyHC) is a fundamental component of the sarcomere structure and muscle contraction. Two of the three adult fast MyHCs, MyHC-IIx and MyHC-IIb, are encoded by Myh1 and Myh4, respectively. However, skeletal muscle disorders have not yet been linked to these genes in humans. MyHC-IIb is barely detectable in human skeletal muscles. Thus, to characterize the molecular function of skeletal muscle MyHCs in humans, investigation of the effect of simultaneous loss of MyHC-IIb and other MyHCs on skeletal muscle in mice is essential. Here, we generated double knockout (dKO) mice with simultaneous loss of adult fast MyHCs by introducing nonsense frameshift mutations into the Myh1 and Myh4 genes. The dKO mice appeared normal after birth and until 2 weeks of age but showed severe skeletal muscle hypoplasia after 2 weeks. In 3-week-old dKO mice, increased expression of other skeletal muscle MyHCs, such as MyHC-I, MyHC-IIa, MyHC-neo, and MyHC-emb, was observed. However, these expressions were not sufficient to compensate for the loss of MyHC-IIb and MyHC-IIx. Moreover, the aberrant sarcomere structure with altered expression of sarcomere components was observed in dKO mice. Our findings imply that the simultaneous loss of MyHC-IIb and MyHC-IIx is substantially detrimental to postnatal skeletal muscle function and will contribute to elucidating the molecular mechanisms of skeletal muscle wasting disorders caused by the loss of skeletal muscle MyHCs.
  • Setsuko Komatsu, Yoshie Tsutsui, Takashi Furuya, Hisateru Yamaguchi, Keisuke Hitachi, Kunihiro Tsuchida, Masahiko Tani
    International Journal of Molecular Sciences 2022年9月8日  査読有り

MISC

 1

書籍等出版物

 3

講演・口頭発表等

 61

担当経験のある科目(授業)

 10

共同研究・競争的資金等の研究課題

 22

産業財産権

 1

学術貢献活動

 4

社会貢献活動

 4

メディア報道

 4

その他

 1

その他教育活動上特記すべき事項

 24
  • 件名
    2018年 医療科学部卒業研究指導
    概要
    「ヒトMettl21e相同遺伝子が偽遺伝子に変化した要因の同定」
  • 件名
    藤田保健衛生大学医学部FD講演会
    概要
    「良い講義について ~殿堂入りした教員が教える講義の秘訣~」参加
  • 件名
    2020年度 医学部医学研究演習
    開始年月日
    2020/02/03
    終了年月日
    2021/02/26
  • 件名
    2020年 アセンブリ2活動
    開始年月日
    2020/04/01
    終了年月日
    2020/11/30