Curriculum Vitaes

Hisatsugu KOSHIMIZU

  (小清水 久嗣)

Profile Information

Affiliation
Professor (Head of Office), Office of Research Administration (ORA), Research Promotion Headquarters, Fujita Health University
(Concurrent)Adjunct Professor, Graduate School of Health Sciences
Degree
Ph.D.(Osaka University)

Other name(s) (e.g. nickname)
Hisa KOSHIMIZU
ORCID ID
 https://orcid.org/0000-0002-8619-6678
J-GLOBAL ID
200901020703307395
researchmap Member ID
6000001456

External link

▶︎ 藤田医科大学・研究推進本部URA室にてリサーチ・アドミニストレーション、研究推進をメインのミッションとしています。特に研究力強化にかかわる取り組みを行なっています。

▶︎ 研究の専門は神経科学で、脳由来神経栄養因子(BDNF)およびその関連分子の機能、特に精神疾患に関するものについての研究を行なっています。


Papers

 36
  • Sarantuya Enkhjargal, Kana Sugahara, Behnoush Khaledian, Miwako Nagasaka, Hidehito Inagaki, Hiroki Kurahashi, Hisatsugu Koshimizu, Tatsushi Toda, Mariko Taniguchi-Ikeda
    Human Molecular Genetics, 32(8) 1301-1312, Nov, 2022  Peer-reviewed
    Fukuyama congenital muscular dystrophy (FCMD) is an autosomal recessive disorder caused by fukutin (FKTN) gene mutations. FCMD is the second most common form of childhood muscular dystrophy in Japan, and the most patients possess a homozygous retrotransposal SINE-VNTR-Alu insertion in the 3′-untranslated region of FKTN. A deep-intronic variant (DIV) was previously identified as the second most prevalent loss-of-function mutation in Japanese patients with FCMD. The DIV creates a new splicing donor site in intron 5 that causes aberrant splicing and the formation of a 64-base pair pseudoexon in the mature mRNA, resulting in a truncated nonfunctional protein. Patients with FCMD carrying the DIV present a more severe symptoms, and currently, there is no radical therapy available for this disorder. In the present study, we describe in vitro evaluation of antisense oligonucleotide mediated skipping of pseudoexon inclusion and restoration of functional FKTN protein. A total of 16 19-26-mer antisense oligonucleotide sequences were designed with a 2’-O-methyl backbone and were screened in patient-derived fibroblasts, lymphoblast cells, and minigene splice assays. One antisense oligonucleotide targeting the exonic splice enhancer region significantly induced pseudoexon skipping and increased the expression of normal mRNA. It also rescued FKTN protein production in lymphoblast cells and restored functional O-mannosyl glycosylation of alpha-dystroglycan in patient-derived myotubes. Based on our results, ASO-based splicing correction should be investigated further as a potential treatment for patients with FCMD carrying the DIV.
  • Hisatsugu Koshimizu, Hidetada Matsuoka, Yoshihiro Nakajima, Anna Kawai, Junichiro Ono, Ken-ichi Ohta, Takanori Miki, Masataka Sunagawa, Naoki Adachi, Shingo Suzuki
    Neuropsychopharmacology Reports, 41(4) 485-495, 2021  Peer-reviewedLead author
    The striatum, a main component of the basal ganglia, is a critical part of the motor and reward systems of the brain. It consists of GABAergic and cholinergic neurons and receives projections of dopaminergic, glutamatergic, and serotonergic neurons from other brain regions. Brain-derived neurotrophic factor (BDNF) plays multiple roles in the central nervous system, and striatal BDNF has been suggested to be involved in psychiatric and neurodegenerative disorders. However, the transcriptomic impact of BDNF on the striatum remains largely unknown. In the present study, we performed transcriptomic profiling of striatal cells stimulated with BDNF to identify enriched gene sets (GSs) and their novel target genes in vitro. We carried out RNA sequencing (RNA-Seq) of messenger RNA extracted from primary dissociated cultures of rat striatum stimulated with BDNF and conducted Generally Applicable Gene-set Enrichment (GAGE) analysis on 10599 genes. Significant differentially expressed genes (DEGs) were determined by differential expression analysis for sequence count data 2 (DESeq2). GAGE analysis identified significantly enriched GSs that included GSs related to regulation and dysregulation of synaptic functions, such as synaptic vesicle cycle and addiction to nicotine and morphine, respectively. It also detected GSs related to various types of synapses, including not only GABAergic and cholinergic synapses but also dopaminergic and glutamatergic synapses. DESeq2 revealed 72 significant DEGs, among which the highest significance was observed in the apolipoprotein L domain containing 1 (Apold1). The present study indicates that BDNF predominantly regulates the expression of synaptic-function-related genes and that BDNF promotes synaptogenesis in various subtypes of neurons in the developing striatum. Apold1 may represent a unique target gene of BDNF in the striatum.
  • Hisatsugu Koshimizu, Shingo Suzuki, Anna Kawai, Ryuichiro Miura, Ken-ichi Ohta, Takanori Miki, Naoki Adachi, Hidetada Matsuoka
    Neuropsychopharmacology Reports, 40(3) 275-280, Jun, 2020  Peer-reviewedLead author
    Chromosome 8 open reading frame 46 (C8orf46), a human protein-coding gene, has recently been named Vexin. A recent study indicated that Vexin is involved in embryonic neurogenesis. Additionally, some transcriptomic studies detected changes in the mRNA levels of patients with psychiatric and neurological diseases. In our previous study, we sought for target genes of brain-derived neurotrophic factor (BDNF) in cultured rat cortical neurons, finding that BDNF potentially leads to the upregulation of Vexin mRNA. However, its underlying mechanisms are unknown. In the present study, we assessed the regulatory mechanisms of the BDNF-induced gene expression of Vexin in vitro. We reanalyzed ChIP-seq data in various human organs provided by the ENCODE project, evaluating acetylation levels of the 27th lysine residue of the histone H3 (H3K27ac) at the Vexin locus. The transcriptomic effects of BDNF on rat Vexin (RGD1561849) were evaluated by real-time quantitative PCR (RT-qPCR) in primary cultures of cerebral cortical neurons, in the presence or absence of inhibitors for signaling molecules activated by BDNF. Results The Vexin locus and its promoter region in the brain angular gyrus show higher acetylation levels of the H3K27 than those in other organs. Stimulation of cultured rat cortical neurons, but not astrocyte, with BDNF, led to marked elevations in the mRNA levels of Vexin, which was inhibited in the presence of K252a and U0126. The upregulated H3K27ac in the brain may be associated with the enriched gene expression of Vexin in the brain. It is indicated that BDNF induces the gene expression of Vexin in the cortical neurons via the TrkB-MEK signaling pathway.
  • Koshimizu H, Nogawa S, Asano S, Ikeda M, Iwata N, Takahashi S, Saito K, Miyakawa T
    Translational Psychiatry, 9(1) 52, Jan, 2019  Peer-reviewedLead author
    Major depressive disorder (MDD) is a common and disabling psychiatric disorder. A recent mega analysis of genome-wide association studies (GWASs) identified 44 loci associated with MDD, though most of the genetic etiologies of the MDD/psychological distress remain unclear. To further understand the genetic basis of MDD/psychological distress, we conducted a GWAS in East Asia with more than 10,000 participants of Japanese ancestry who had enrolled in a direct-to-consumer genetic test. After quality control on the genotype data, 10,330 subjects with a total of 8,567,708 imputed SNPs were eligible for the analysis. The participants completed a self-administered questionnaire on their past medical history and health conditions that included the 6-item Kessler screening scale (K6 scale) for psychological distress (cut-off point of 5) and past medical history of MDD, resulting in 3981 subjects assigned to “psychologically distressed group” [cases], and the remaining 6349 subjects were assigned to the “non-psychologically distressed group” [controls]. In this GWAS, we found an association with genome-wide significance at rs6073833 (P = 7.60 × 10 −9 ) in 20q13.12. This is, to the best of our knowledge, the first large-scale GWAS for psychological distress using data from direct-to-consumer (DTC) genetic tests in a population of non-European-ancestry, and the present study thus detected a novel locus significantly associated with psychological distress in the Japanese population.
  • Koshimizu H, Hirata N, Takao K, Toyama K, Ichinose T, Furuya S, Miyakawa T
    Neuropsychopharmacology Reports, 39(1) 56-60, Nov, 2018  Peer-reviewedLead author

Major Misc.

 23

Presentations

 45

Major Teaching Experience

 6

Major Research Projects

 9

Major Industrial Property Rights

 4

Major Academic Activities

 30
  • Planning, Management, etc., Others
    日本神経科学学会 (NEURO2024: 第47回日本神経科学大会. 第67回日本神経化学会大会. 第46回日本生物学的精神医学会年会. 第8回アジアオセアニア神経科学連合コングレス) (ハイブリッド開催(福岡国際会議場; YouTube Live)), Jul 27, 2024
    0 2024年7月に福岡で開かれるNeuro2024にて「ランチョン大討論会 〜私達が望む神経科学の研究環境―よりよき現在と未来へ向けて」を開催します! 政府は「科学技術・イノベーション基本計画」を策定し、長期的視野に立って体系的かつ一貫した科学技術政策を実行することとなっています。具体的には内閣総理大臣からの諮問を受けて、総合科学技術・イノベーション会議(CSTI)において、基本計画が策定されます。基本計画は、これまでにImPact、SIP、ムーンショット、国際卓越研究大学等の政策に大きな影響を与えてきています。現在進行中の「第7期科学技術・イノベーション基本計画」に向かって、神経科学分野の特徴も踏まえつつ、研究費やキャリアパス等について、現場の研究者、特に若手の皆さまからの意見を集約して計画にフィードバックすることを通じ、よりよい研究環境を創っていきましょう!
  • Planning, Management, etc., Others
    International Center for Brain Science (ICBS), Fujita Health University (Nagoya Marriott Associa Hotel), Nov 25, 2023 - Nov 26, 2023
  • Planning, Management, etc., Panel moderator, Session chair, etc., Others
    藤田医科大学 研究推進本部 URA室 (オンライン開催(Zoom)), Nov 22, 2023
    演者:湯浅 誠 (カクタス・コミュニケーションズ日本法人代表)
  • Planning, Management, etc., Panel moderator, Session chair, etc., Others
    藤田医科大学 研究推進本部 SD講習会 (オンライン開催(Zoom)), Mar 24, 2023
  • Planning, Management, etc., Others
    International Center for Brain Science (ICBS), Fujita Health University (名古屋マリオットアソシアホテル), Nov 19, 2022 - Nov 20, 2022
  • Planning, Management, etc., Panel moderator, Session chair, etc., Others
    藤田医科大学 研究支援推進本部 SD講習会 (オンライン開催(Zoom)), Mar 18, 2022
  • Planning, Management, etc., Panel moderator, Session chair, etc., Others
    藤田医科大学研究支援推進本部・愛知医科大学研究創出支援センター (オンライン開催(Zoom Webinar)), Jun 25, 2021
    近年、研究の進め方やその評価の体系、情報発信の方法など、研究をめぐる環境が大きく変化しつつある。こうした時代の変化と日進月歩の研究の進展の中、いかに研究を推進し情報を収集・発信するかは、研究者個人のみならず大学組織全体においても非常に重要である。本企画は、愛知医科大学の研究創出支援センターとの共同で開催。我が国の研究推進の最前線で活躍する数名をお招きし、昨今の研究をめぐる環境の劇的な変化などについて紹介・議論いただいた。
  • Planning, Management, etc., Others
    日本神経科学学会 (Neuro2019: 第42回日本神経科学大会 第62回日本神経化学会大会) (朱鷺メッセ), Jul 28, 2019
    近年、遺伝子編集技術、光遺伝学、ブレインマッピング、単一細胞シークエンシング、ディープラーニングなど、さまざまな新しい技術が開発され、 神経科学研究が大きく進展しています。また個々の研究者を取り巻く研究環境も大きく変貌しつつあります。そこで様々な問題について、専門分野や年齢・研究環境を越えた建設的な議論を深めるために、日本神経科学学会では大会の最終日に不定期に「ランチョン大討論会」を行っています。 【日時】2019年7月28日(日)12:00-14:00 【会場 】朱鷺メッセ (新潟コンベンションセンター) 第1会場(国際会議室) 【内容】脳科学分野を含む日本の国際競争力が低下していることが近年顕在化しています。前回の大会(神戸)では、「来る10-20年のタイムスパンで日本の脳科学を発展させていくには何を、どう目指せばよいのか」というテーマで、各分野の有志に持論を発表していただき討論を展開しました。今回の新潟大会では、ダイバーシティ企画・若手PI企画とタイアップし、「何を」のみでなく、「どうやって」に重点を置いて討論を行います。来る20年にブレークスルーを生みだしていくには、私たちはどうすれば良いのでしょうか?Web登録および大会会場先着200名様限定で特製「脳科学弁当」をご提供。 【企画】宮川 剛、小清水 久嗣(藤田医科大学)、柚﨑 通介(慶應義塾大学)
  • Planning, Management, etc., Panel moderator, Session chair, etc., Others
    日本神経精神薬理学会(第28回日本臨床精神神経薬理学会 第48回日本神経精神薬理学会 合同年会) (東京ドームホテル), Nov 16, 2018
  • Planning, Management, etc., Panel moderator, Session chair, etc., Others
    国立研究開発法人科学技術振興機構(JST) 研究開発戦略センター(CRDS) (JST東京本部), Jan 20, 2018
    CRDS「研究開発の俯瞰報告書 ライフサイエンス・臨床医学分野」取りまとめに関連した勉強会
  • Planning, Management, etc., Others
    日本分子生物学会(第36回日本分子生物学会年会) (神戸国際会議場), Dec 5, 2013

Major Social Activities

 18

Other

 7
  • ラジオ局 FM PORT の情報番組 MORNING GATE に出演。企画・運営で参加している日本神経科学学会の市民公開講座「脳科学の達人2019」について一般聴取者に向けて紹介。2019年6月
  • Record of peer review for scientific journals (Publons) 🔗 https://www.webofscience.com/wos/author/record/268594
  • ① CRH結合蛋白質の可視化(CRH-BP-pHluorin による生細胞中での輸送・放出過程の可視化。昭和大学、香川大学、横浜薬科大との共同研究。詳細はAdachi et al., J. Neurochem. 2018) *本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進センター(fuji-san@fujita-hu.ac.jp)まで
  • 特になし
  • ・米国国立衛生研究所(NIH) 国立小児保健発達研究所(NICHD) にてインターン生の研究指導・藤田保健衛生大学 医学部, 第11回総医研・研究交流セミナー 担当