Institute for Comprehensive Medical Science

倉橋 浩樹

クラハシ ヒロキ  (HIROKI KURAHASHI)

基本情報

所属
藤田医科大学 医科学研究センター 分子遺伝学研究部門 教授
学位
医学博士(大阪大学)

研究者番号
30243215
J-GLOBAL ID
200901098214871015
researchmap会員ID
1000367088

外部リンク

ヒト生殖細胞系列の染色体異常(トリソミーなどの異数体、転座や欠失・重複などの構造異常)の発生メカニズムの研究をしています。また、次世代シークエンスによる着床前遺伝学的検査の開発研究を行っています。バックグラウンドは小児科医で、現在は大学病院・臨床遺伝科で、染色体異常症や不妊・習慣流産の患者さんやご家族、出生前、着床前遺伝学的検査を希望されるクライエントへの遺伝カウンセリングをおこなっています。大学院遺伝カウンセラー養成課程で人材育成も行っています。


論文

 363
  • Masanobu Kumon, Shunsuke Nakae, Shigeo Ohba, Masato Abe, Seiji Yamada, Hikaru Sasaki, Takema Kato, Hiroki Kurahashi, Yuichi Hirose
    Brain tumor pathology 2025年7月27日  
    Compared to oligodendrogliomas, astrocytomas may have a relatively higher frequency of intracranial remote recurrence, despite generally favorable prognoses. Previous studies identified 8q gain, particularly in the terminal region, as a poor prognostic factor. This study evaluated MYC expression and its relationship with copy number gain at 8q24.21, in relation to recurrence patterns in astrocytomas, with a particular focus on intracranial remote recurrence. A retrospective analysis was conducted on 27 patients treated between 2006 and 2019. MYC expression was assessed by immunohistochemistry (IHC), and copy number status by metaphase comparative genomic hybridization and next-generation sequencing. Recurrence patterns were categorized as local or remote.Among 43 specimens analyzed by IHC, MYC expression was observed in 72%, with higher positivity in recurrent (80%) than initial (61%) specimens, though the difference was not statistically significant (p = 0.30). Copy number analysis showed a significant increase in 8q24.21 copy number in specimens from cases with remote recurrence compared to those with local recurrence (p = 0.033). However, no significant correlation was found between MYC copy number and protein expression (p = 0.055). These findings suggest that MYC is frequently expressed in astrocytomas, but its expression does not significantly reflect 8q gain or recurrence pattern.
  • Gen Furukawa, Rie Kawamura, Hidehito Inagaki, Yoshihiko Sakakibara, Yoshimasa Asada, Tetsuaki Hara, Takeshi Iwasa, Akira Kuwahara, Minoru Irahara, Hiroki Kurahashi
    Journal of human genetics 70(5) 249-255 2025年5月  
    It is occasionally necessary to distinguish balanced reciprocal translocations from normal diploidy since balanced carriers can have reproductive problems or manifest other disease phenotypes. It is challenging to do this however using next generation sequencing (NGS) or microarray-based preimplantation genetic testing (PGT). In this study, discarded embryos were harvested from balanced reciprocal translocation carriers intending PGT that were determined to be unsuitable for transfer due to unbalanced translocations or translocation-unrelated aneuploidy. Two trophoectoderm biopsy samples were obtained from each single embryo. Whole genome amplification (WGA) was performed either by looping-based amplification (LBA) or multiple displacement amplification (MDA). NGS-based copy number variation (CNV) analysis as well as translocation-specific PCR was performed for each. We used embryo samples from t(8;22)(q24.13;q11.2) and t(11;22)(q23;q11.2) carriers since they are recurrent constitutional translocations that have nearly identical breakpoints even among independent unrelated families. CNV analysis was generally consistent between the two WGA methods. Translocation-specific PCR allowed us to detect each derivative chromosome in the MDA WGA samples but not with the LBA method, presumably due to coverage bias or the shorter sized WGA products. We successfully distinguished balanced reciprocal translocations from normal diploidy in normal samples with CNV analysis. A combination of CNV analysis and translocation-specific PCR using MDA-amplified WGA product can distinguish between balanced reciprocal translocation and normal diploidy in preimplantation genetic testing for structural rearrangements (PGT-SR).
  • Ryotaro Hashizume, Sachiko Wakita, Hirofumi Sawada, Shin-Ichiro Takebayashi, Yasuji Kitabatake, Yoshitaka Miyagawa, Yoshifumi S Hirokawa, Hiroshi Imai, Hiroki Kurahashi
    PNAS nexus 4(2) pgaf022 2025年2月  
    Human trisomy 21, responsible for Down syndrome, is the most prevalent genetic cause of cognitive impairment and remains a key focus for prenatal and preimplantation diagnosis. However, research directed toward eliminating supernumerary chromosomes from trisomic cells is limited. The present study demonstrates that allele-specific multiple chromosome cleavage by clustered regularly interspaced palindromic repeats Cas9 can achieve trisomy rescue by eliminating the target chromosome from human trisomy 21 induced pluripotent stem cells and fibroblasts. Unlike previously reported allele-nonspecific strategies, we have developed a comprehensive allele-specific (AS) Cas9 target sequence extraction method that efficiently removes the target chromosome. The temporary knockdown of DNA damage response genes increases the chromosome loss rate, while chromosomal rescue reversibly restores gene signatures and ameliorates cellular phenotypes. Additionally, this strategy proves effective in differentiated, nondividing cells. We anticipate that an AS approach will lay the groundwork for more sophisticated medical interventions targeting trisomy 21.
  • Masafumi Miyata, Arisa Kojima, Yuri Kawai, Hidetoshi Uchida, Hiroko Boda, Naoko Ishihara, Hidehito Inagaki, Tetsushi Yoshikawa, Hiroki Kurahashi
    Human genome variation 12(1) 2-2 2025年1月6日  
    UBA1 is an E1 ubiquitin-activating enzyme that initiates the ubiquitylation of target proteins and is thus a key component of the ubiquitin signaling pathway. Three disorders are associated with pathogenic variants of the UBA1 gene: vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome, lung cancer in never smokers (LCINS), and X-linked spinal muscular atrophy (XL-SMA, SMAX2). We here report a case of infantile respiratory distress syndrome followed by continuing neuromuscular symptoms. We identified a de novo hemizygous mutation, c.1660 C > T (p.Pro554Ser), in exon 15 of the UBA1 gene in this baby. This missense mutation was located with the AAD (active adenylation domain) of the protein, a known hotspot of SMAX2 mutations. This case lends support to the genotype-phenotype correlation regarding the UBA1 mutation and its related diseases.
  • Takuto Uyama, Iemasa Koh, Tomoki Komoshita, Ayako Matsushima, Ryo Ohara, Arisa Nomura, Yuka Enokizono, Yuki Sato, Kosuke Nakamoto, Hirohiko Morioka, Yuriko Oomori, Yuko Teraoka, Suguru Nosaka, Katsuyuki Tomono, Masaki Sekine, Tomomi Yamazaki, Yurika Mukai, Kouji Banno, Hiroki Kurahashi, Yoshiki Kudo
    Experimental and therapeutic medicine 28(3) 358-358 2024年9月  
    Mixed gonadal dysgenesis (MGD) is a disorder of sex development caused by mosaicism of the Y chromosome, represented by 45,X/46,XY. Prophylactic gonadectomy is recommended as soon as possible after its diagnosis, owing to a high risk of malignancy. In the present case, a 21-year-old woman presented with primary amenorrhea. Although the patient's external genitalia were female, the patient exhibited a hypoplastic uterus, wherein the ovaries were difficult to identify. The patient's height was 146 cm; they had cubitus valgus and webbing of the neck, leading to the consideration of a disorder of sex development. Chromosomal examination revealed 45,X/46,XY mosaicism. Thus, the patient was diagnosed with MGD. After thorough counseling, laparoscopic bilateral gonadectomy was performed. Pathological examination revealed a gonadoblastoma of the left gonad. Postoperatively, the patient had no recurrence and continued on Kaufmann therapy. In conclusion, prophylactic gonadectomy is recommended immediately following a diagnosis of MGD; however, the timing of the surgery should be carefully considered and adequate counseling should be conducted by a multidisciplinary team.

MISC

 193

担当経験のある科目(授業)

 1

共同研究・競争的資金等の研究課題

 44

産業財産権

 1

その他

 5
  • (1)1分子レベルでのt(11;22)(q23;q11.2)転座の検出 (2)習慣流産炉関連するANXA5プロモーター多型の解析
  • その他教育活動上特記すべき事項 藤田保健衛生大学大学院・保健学研究科・臨床検査学領域に遺伝カウンセリング分野を新規開設し、2014年度に開講した。
  • 教育方法・教育実践に関する発表、講演等 2012年〜 日本人類遺伝学会・臨床細胞遺伝学認定士制度委員として、染色体検査に携わる人材育成・知識や技術の向上などの教育に関する活動を行っている。
  • 作成した教科書、教材、参考書 2011年〜 300人規模で毎年行われる遺伝医学セミナーのテキストを作成している。
  • 教育内容・方法の工夫(授業評価等を含む) 2004年〜2005年「統合基礎医学」、2006年〜「臨床遺伝学」の講義をM2の学生に対し行い、基礎医学の講義でありながら、遺伝カウンセリングや疾患を中心とした内容でおこない、学生の評判は良かった。 2009年〜 医学研究科分子医学系専攻の大学院生のための分子生物学技術セミナーを開講 2013年〜 医学研究科大学院生のための分子生物学技術講座を開講 2014年〜 保健学研究科大学院、認定遺伝カウンセラー養成課程を開講