研究者業績
基本情報
- 所属
- 藤田医科大学 研究推進本部 総合医科学研究部門 医科学研究センター システム医科学研究部門
- 学位
- 学士(医学)(東京大学)博士(医学)(総合研究大学院大学)
- 連絡先
- tomoyuki.muranofujita-hu.ac.jp
- ORCID ID
- https://orcid.org/0000-0002-9351-737X
- J-GLOBAL ID
- 202101008576743119
- researchmap会員ID
- B000249228
- 外部リンク
神経の過剰な興奮が精神疾患の病態形成に及ぼす影響について研究しています。
研究キーワード
8研究分野
1経歴
3-
2019年4月 - 現在
-
2017年4月 - 2019年3月
-
2015年4月 - 2017年3月
受賞
4論文
8-
Frontiers in Psychiatry 14 1151480 2023年5月2日 査読有り
-
Proceedings of the National Academy of Sciences of the United States of America 119(32) e2106830119 2022年8月9日 査読有り筆頭著者The dentate gyrus (DG) plays critical roles in cognitive functions, such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca2+ imaging in freely moving mice and analyzed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field, as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. Our data also showed that each type of information is unevenly distributed in groups of DG neurons, and different types of information are independently encoded in overlapping, but different, populations of neurons. In alpha-calcium/calmodulin-dependent kinase II (αCaMKII) heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.
-
2020年6月9日 筆頭著者Abstract The dentate gyrus (DG) plays critical roles in cognitive functions such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca2+imaging in freely moving mice and analysed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. In αCaMKII heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.
-
Molecular brain 12(1) 108-108 2019年12月10日 査読有り
-
Communications Biology 2(1) 2019年1月22日 査読有り筆頭著者Abstract Biomarkers are needed to improve the diagnosis of neuropsychiatric disorders, which are often associated to excitatory/inhibitory imbalances in neural transmission and abnormal maturation. Here, we characterized different disease conditions by mapping changes in the expression patterns of maturation-related genes whose expression was altered by experimental neural hyperexcitation in published studies. This analysis revealed two gene expression patterns: decreases in maturity markers and increases in immaturity markers. These two groups of genes were characterized by the over-representation of genes related to synaptic function and chromosomal modification, respectively. Using these two groups in a transdiagnostic analysis of 87 disease datasets for eight neuropsychiatric disorders and 12 datasets from corresponding animal models, we found that transcriptomic pseudoimmaturity inducible by neural hyperexcitation is shared by multiple neuropsychiatric disorders, such as schizophrenia, Alzheimer disorders, and amyotrophic lateral sclerosis. Our results indicate that this endophenotype serves as a basis for the transdiagnostic characterization of these disorders.
講演・口頭発表等
19-
American College of Neuropsychopharmacology 2024 Annual Meeting 2024年12月12日
-
The 47th Annual Meeting of the Japan Neuroscience Society (NEURO2024) 2024年7月25日
-
The Society for Neuroscience 2023 Annual Meeting 2023年11月11日
-
Annual Meeting of Japanese Society of Neuropsychopharmacology 2023 2023年9月7日
-
The 51st Annual Meeting of the Japanese Society of Neuropsychopharmacology 2022年11月4日
-
The 45th Annual Meeting of the Japan Neuroscience Society (NEURO2022) 2022年7月2日
-
Annual Meeting of Japanese Society of Neuropsychopharmacology 2021 2021年11月5日
-
The 44th Annual Meeting of the Japan Neuroscience Society 2021年7月28日
-
American College of Neuropsychopharmacology 2020 Annual Meeting 2020年12月6日
-
Annual Meeting of Japanese Society of Neuropsychopharmacology 2020 2020年8月21日
-
The 43nd Annual Meeting of Japan Neuroscience Society 2020年7月30日
-
The 49th Annual Meeting of Japanese Society of Neuropsychopharmacology 2019年10月13日
-
Multiple Types of Information are distributed in different Ensembles of Dentate Gyrus Neurons (Oral)Molecular and Cellular Cognition Society, 18th 2019年10月
-
Society for Neuroscience 50th Annual meeting, Chicago 2019年10月
-
The 42nd Annual Meeting of Japan Neuroscience Society 2019年7月25日
-
Cold Spring Harbor Asia conference 2018年9月
-
American College of Neuropsychopharmacology 2017年12月
-
Society for Neuroscience 46th Annual meeting, SanDiego 2016年11月
-
30th CINP World Congress of Neuropsychopharmacology, Seoul, Republic of Korea 2016年7月
担当経験のある科目(授業)
1-
2024年6月 - 2024年7月解剖学総論 (浜松医科大学)
共同研究・競争的資金等の研究課題
2-
日本学術振興会 科学研究費助成事業 2024年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月