研究者業績

村野 友幸

ムラノ トモユキ  (Tomoyuki Murano)

基本情報

所属
藤田医科大学 総合医科学研究所
学位
学士(医学)
博士(医学)(総合研究大学院大学)

ORCID ID
 https://orcid.org/0000-0002-9351-737X
J-GLOBAL ID
202101008576743119
researchmap会員ID
B000249228

脳の擬似未成熟化現象について研究しています

研究キーワード

 2

論文

 7
  • Hideo Hagihara, Tomoyuki Murano, Tsuyoshi Miyakawa
    Frontiers in Psychiatry 14 1151480 2023年5月2日  査読有り
  • Tomoyuki Murano, Ryuichi Nakajima, Akito Nakao, Nao Hirata, Satoko Amemori, Akira Murakami, Yukiyasu Kamitani, Jun Yamamoto, Tsuyoshi Miyakawa
    Proceedings of the National Academy of Sciences of the United States of America 119(32) e2106830119 2022年8月9日  
    The dentate gyrus (DG) plays critical roles in cognitive functions, such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca2+ imaging in freely moving mice and analyzed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field, as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. Our data also showed that each type of information is unevenly distributed in groups of DG neurons, and different types of information are independently encoded in overlapping, but different, populations of neurons. In alpha-calcium/calmodulin-dependent kinase II (αCaMKII) heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.
  • Hagihara H, Murano T, Ohira K, Miwa M, Nakamura K, Miyakawa T
    Molecular brain 12(1) 108-108 2019年12月10日  査読有り
  • Tomoyuki Murano
    Communications Biology 2 32 2019年1月22日  査読有り
  • Tomoyuki Murano, Hideo Hagihara, Katsunori Tajinda, Mitsuyuki Matsumoto, Tsuyoshi Miyakawa
    Communications biology 2 94 2019年  
    [This corrects the article DOI: 10.1038/s42003-018-0277-2.].
  • Tomoyuki Murano, Hisatsugu Koshimizu, Hideo Hagihara, Tsuyoshi Miyakawa
    SCIENTIFIC REPORTS 7 44531 2017年3月  査読有り
    Alcoholism, which is defined as the recurring harmful use of alcohol despite its negative consequences, has a lifetime prevalence of 17.8%. Previous studies have shown that chronic alcohol consumption disrupts various brain functions and behaviours. However, the precise mechanisms that underlie alcoholism are currently unclear. Recently, we discovered "pseudo-immature" brain cell states of the dentate gyrus and prefrontal cortex (PFC) in mouse models of psychotic disorders and epileptic seizure. Similar pseudo-immaturity has been observed in patients with psychotic disorders, such as schizophrenia and bipolar disorder. Patients with alcoholism occasionally exhibit similar psychological symptoms, implying shared molecular and cellular mechanisms between these diseases. Here, we performed a meta-analysis to compare microarray data from the hippocampi/PFCs of the patients with alcoholism to data from these regions in developing human brains and mouse developmental data for specific cell types. We identified immature-like gene expression patterns in post-mortem hippocampi/PFCs of alcoholic patients and the dominant contributions of fast-spiking (FS) neurons to their pseudo-immaturity. These results suggested that FS neuron dysfunction and the subsequent imbalance between excitation and inhibition can be associated with pseudo-immaturity in alcoholism. These immaturities in the hippocampi/PFCs and the underlying mechanisms may explain the psychotic symptom generation and pathophysiology of alcoholism.

MISC

 2

講演・口頭発表等

 10

共同研究・競争的資金等の研究課題

 1