国際再生医療センター
基本情報
- 所属
- 藤田医科大学 国際再生医療センター 准教授
- 学位
- 博士(医学)(京都大学)
- 研究者番号
- 30570775
- ORCID ID
https://orcid.org/0000-0003-3836-7978- J-GLOBAL ID
- 201101027211272661
- researchmap会員ID
- 6000028643
京都大学アメリカンフットボール部Gangsters出身。それが縁で京都大学再生医科学研究所の笹井芳樹教授に拾ってもらい、理化学研究所CDBにて発生学研究に没頭。2006年京都大学大学院医学研究科博士課程修了(医学博士)。骨格筋発生を学ぶ為、Institut PasteurのMargaret Buckingham研究室に留学し、マウス骨格筋発生研究の薫陶を受ける。帰国後から筋再生の研究をスタートし、ヒト骨格筋発生・再生研究を行う。まずは自分の身体を用いて筋再生、筋肥大の実験に勤しむ。
経歴
7-
2024年4月 - 現在
-
2020年12月 - 2024年3月
-
2018年6月 - 2024年3月
-
2014年4月 - 2018年5月
-
2013年4月 - 2014年3月
学歴
3-
2002年4月 - 2006年3月
-
2000年4月 - 2002年3月
-
1995年4月 - 2000年3月
受賞
3論文
30-
eLife 12 2023年12月15日 責任著者Skeletal muscle atrophy and the inhibition of muscle regeneration are known to occur as a natural consequence of aging, yet the underlying mechanisms that lead to these processes in atrophic myofibers remain largely unclear. Our research has revealed that the maintenance of proper mitochondrial-associated endoplasmic reticulum membranes (MAM) is vital for preventing skeletal muscle atrophy in microgravity environments. We discovered that the deletion of the mitochondrial fusion protein Mitofusin2 (MFN2), which serves as a tether for MAM, in human induced pluripotent stem (iPS) cells or the reduction of MAM in differentiated myotubes caused by microgravity interfered with myogenic differentiation process and an increased susceptibility to muscle atrophy, as well as the activation of the Notch signaling pathway. The atrophic phenotype of differentiated myotubes in microgravity and the regenerative capacity of Mfn2-deficient muscle stem cells in dystrophic mice were both ameliorated by treatment with the gamma-secretase inhibitor DAPT. Our findings demonstrate how the orchestration of mitochondrial morphology in differentiated myotubes and regenerating muscle stem cells plays a crucial role in regulating Notch signaling through the interaction of MAM.
-
International journal of molecular sciences 23(4) 2022年2月12日The proliferation and differentiation of skeletal muscle cells are usually controlled by serum components. Myogenic differentiation is induced by a reduction of serum components in vitro. It has been recently reported that serum contains not only various growth factors with specific actions on the proliferation and differentiation of myogenic cells, but also exogenous exosomes, the function of which is poorly understood in myogenesis. We have found that exosomes in fetal bovine serum are capable of exerting an inhibitive effect on the differentiation of C2C12 myogenic cells in vitro. In this process of inhibition, the downregulation of Tceal5 and Tceal7 genes was observed. Expression of these genes is specifically increased in direct proportion to myogenic differentiation. Loss- or gain- of function studies with Tceal5 and Tceal7 indicated that they have the potential to regulate myogenic differentiation via exosomes in fetal bovine serum.
-
Stem Cell Research & Therapy 12(1) 2021年12月<title>Abstract</title><sec> <title>Background</title> Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of <italic>COL6A1</italic>, <italic>2</italic>, and <italic>3</italic> genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. </sec><sec> <title>Methods</title> To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). </sec><sec> <title>Results</title> All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (<italic>Col6a1</italic>KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in <italic>Col6a1</italic>KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (<italic>Col6a1</italic>KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. </sec><sec> <title>Conclusions</title> These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice. </sec>
-
日本筋学会学術集会プログラム・抄録集 6回 69-69 2020年12月
MISC
10-
日本筋学会学術集会プログラム・抄録集 4回 54-54 2018年8月
-
日本筋学会学術集会プログラム・抄録集 4回 54-54 2018年8月
-
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE 59(9) 2018年7月
書籍等出版物
5講演・口頭発表等
2-
1st Symposium on "Skeletal muscle cells in Growth and Disease" 2023年5月1日
-
5th TERMIS World Congress 2018年
担当経験のある科目(授業)
2-
人体の構造2(肉眼解剖実習) (藤田医科大学)
-
人体の構造1 (藤田医科大学)
共同研究・競争的資金等の研究課題
12-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費補助金 基盤研究(A) 2018年 - 2022年
-
AMED 革新的先端研究開発支援事業メカノバイオロジー 2016年 - 2022年
-
堀科学芸術振興財団 研究費助成事業 2022年
-
中冨健康科学振興財団 研究助成金 2020年
その他
1-
骨格筋幹細胞誘導法(遺伝子リプログラミング、発生学的分化誘導法) Sato et al., Stem Cell Reports, 2019 ; Sato, J Neuromuscular Diseases, 2020) *本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進センター(fuji-san@fujita-hu.ac.jp)まで