Yuji Hattori, Hiroya Yamada, Eiji Munetsuna, Ryosuke Fujii, Yoshitaka Ando, Mirai Yamazaki, Genki Mizuno, Yoshiki Tsuboi, Yuya Ishihara, Naohiro Ichino, Keiko Sugimoto, Keisuke Osakabe, Hiroaki Ishikawa, Koji Ohashi, Koji Suzuki
Genetic testing and molecular biomarkers 27(8) 239-247 2023年8月
Background: The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) has become a global health problem. NAFLD has few initial symptoms and may be difficult to detect early, so there is need for a minimally invasive early detection marker. We hypothesized that miR-122 and miR-20a levels combined, as the miR-122/miR-20a ratio might detect NAFLD more sensitively. Methods: This study involved 167 participants with low alcohol intake. Those who had an increase in echogenicity of the liver parenchyma and hepato-renal contrast on ultrasonography were classified as the NAFLD group (n = 44), which was further classified into mild (n = 26) and severe (n = 18) groups based on echogenic intensity and hepatic vessel and diaphragm visualization. Participants without fatty liver were included in the normal group, except for those with an abnormal body mass index, glycated hemoglobin, and systolic blood pressure (n = 123) values. Serum miR-122 and miR-20a expression levels in participants were measured by real-time polymerase chain reaction, and the miR-122/miR-20a was calculated. Results: In the NAFLD group, miR-122 expression was significantly higher and the miR-20a was significantly lower than in the normal group, in agreement with previous studies. miR-122/miR-20a was also significantly higher in the NAFLD group. Receiver operating characteristic curve analysis was performed with miR-122/miR-20a as an NAFLD detection marker, and the area under the curve of miR-122/miR-20a was significantly larger than that of miR-122 or miR-20a alone. Conclusions: The miR-122/miR-20a ratio, combined with miR-122 and miR-20a levels, is a useful biomarker to detect NAFLD with high sensitivity.