医学部

下野 洋平

シモノ ヨウヘイ  (Yohei Shimono)

基本情報

所属
藤田医科大学 医学部 医学科 教授
学位
博士(医学)(名古屋大学)

J-GLOBAL ID
200901051462928019
researchmap会員ID
5000041187

外部リンク

学歴

 2

論文

 91
  • Naoe Kotomura, Yohei Shimono, Satoru Ishihara
    Endocrinology 165(6) 2024年4月29日  
    Abstract CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.
  • 林 孝典, 吉田 淳平, 宗綱 栄二, Behnoush Khaledian, 前田 真男, 水野 真広, 牛田 かおり, 河田 健司, 浅井 直也, 下野 洋平
    日本癌学会総会記事 82回 978-978 2023年9月  
  • Khaledian Behnoush, 吉田 淳平, 林 孝典, 水野 真広, 牛田 かおり, 前田 真男, 宗綱 栄二, 河田 健司, 浅井 直也, 下野 洋平, Shimono Yohei
    日本癌学会総会記事 82回 1349-1349 2023年9月  
  • Kohki Toriuchi, Toshie Kihara, Hiromasa Aoki, Hiroki Kakita, Satoru Takeshita, Hiroko Ueda, Yasumichi Inoue, Hidetoshi Hayashi, Yohei Shimono, Yasumasa Yamada, Mineyoshi Aoyama
    International Journal of Molecular Sciences 24(3) 2829-2829 2023年2月1日  
    Atherosclerosis can lead to cardiovascular and cerebrovascular diseases. Atherosclerotic plaque formation is promoted by the accumulation of inflammatory cells. Therefore, modulating monocyte recruitment represents a potential therapeutic strategy. In an inflammatory state, the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) is upregulated in endothelial cells. We previously reported that miR-1914-5p in endothelial cells suppresses interleukin (IL)-1β–induced ICAM-1 expression and monocyte adhesion to endothelial cells. However, whether monocyte miR-1914-5p affects monocyte recruitment is unclear. In this study, IL-1β decreased miR-1914-5p expression in a human monocyte cell line. Moreover, miR-1914-5p inhibition enhanced adhesion to endothelial cells with the upregulation of macrophage-1 antigen (Mac-1), a counter-ligand to ICAM-1. Transmigration through the endothelial layer was also promoted with the upregulation of monocyte chemotactic protein-1 (MCP-1). Furthermore, a miR-1914-5p mimic suppressed IL-1β–induced monocyte adhesion and transmigration in monocytes with Mac-1 and MCP-1 downregulation. Further investigation of miR-1914-5p in monocytes could lead to the development of novel diagnostic markers and therapeutic strategies for atherosclerosis.
  • Yuki Nouchi, Eiji Munetsuna, Hiroya Yamada, Mirai Yamazaki, Yoshitaka Ando, Genki Mizuno, Ryosuke Fujii, Itsuki Kageyama, Takuya Wakasugi, Tomohide Sakakibara, Atsushi Teshigawara, Hiroaki Ishikawa, Yohei Shimono, Koji Suzuki, Shuji Hashimoto, Koji Ohashi
    Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association 130(12) 814-820 2022年11月11日  
    The consumption of high-fructose corn syrup (HFCS) has been increasing in recent decades, especially among children. Some reports suggest that children and adolescents are more sensitive to the adverse effects of fructose intake than adults. However, the underlying mechanism of the difference in vulnerability between adolescence and adulthood have not yet been elucidated. In this study, we attempted to elucidate the different effects of HFCS intake at different growth stages in rats: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD60-100), and adulthood (PD100-140). Since alterations in hepatic glucocorticoid (GC) metabolism can cause diseases including insulin resistance, we focused on GC metabolizing enzymes such as 11 beta-hydroxysteroid dehydrogenase 1 and 2 (Hsd11b1 and Hsd11b2) and steroid 5 alpha-reductase 1 (Srd5a1). Western blotting showed an increase in Hsd11b1 expression and a decrease in Hsd11b2 expression in childhood and adolescence but not in adulthood. We also observed changes in Hsd11b1 and Hsd11b2 activities only in childhood and adolescence, consistent with the results of mRNA and protein expression analysis. The effect of high-fructose intake with regards to GC metabolism may therefore vary with developmental stage. This study provides insight into the adverse effects of fructose on GC metabolism in children in the context of increasing rates of HFCS consumption.

MISC

 56

講演・口頭発表等

 68

担当経験のある科目(授業)

 3

所属学協会

 6

共同研究・競争的資金等の研究課題

 29

産業財産権

 2

その他

 2
  • 特になし
  • ① 抗がん剤(脂肪細胞に高発現するアディプシンを標的とすることでがん幹細胞性を抑制する抗がん剤。日本特許取得) ② ヒト腫瘍異種移植マウス(PDX)。乳がん、大腸がんなど 本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで