医学部 生化学

Yohei Shimono

  (下野 洋平)

Profile Information

Affiliation
Professor, School of Medicine Faculty of Medicine, Fujita Health University
Degree
Doctor(Medicine)(Nagoya University)

J-GLOBAL ID
200901051462928019
researchmap Member ID
5000041187

External link

Papers

 77
  • Jumpei Yoshida, Takanori Hayashi, Eiji Munetsuna, Behnoush Khaledian, Fujiko Sueishi, Masahiro Mizuno, Masao Maeda, Takashi Watanabe, Kaori Ushida, Eiji Sugihara, Kazuyoshi Imaizumi, Kenji Kawada, Naoya Asai, Yohei Shimono
    Scientific reports, 14(1) 18494-18494, Aug 9, 2024  
    Adipocyte-cancer cell interactions promote tumor development and progression. Previously, we identified adipsin (CFD) and its downstream effector, hepatocyte growth factor (HGF), as adipokines that enhance adipocyte-breast cancer stem cell interactions. Here, we show that adipsin-dependent adipocyte maturation and the subsequent upregulation of HGF promote tumor invasion in breast cancers. Mature adipocytes, but not their precursors, significantly induced breast tumor cell migration and invasion in an adipsin expression-dependent manner. Promoters of tumor invasion, galectin 7 and matrix metalloproteinases, were significantly upregulated in cancer cells cocultured with mature adipocytes; meanwhile, their expression levels in cancer cells cocultured with adipocytes were reduced by adipsin knockout (Cfd KO) or a competitive inhibitor of CFD. Tumor growth and distant metastasis of mammary cancer cells were significantly suppressed when syngeneic mammary cancer cells were transplanted into Cfd KO mice. Histological analyses revealed reductions in capsular formation and tumor invasion at the cancer-adipocyte interface in the mammary tumors formed in Cfd KO mice. These findings indicate that adipsin-dependent adipocyte maturation may play an important role in adipocyte-cancer cell interaction and breast cancer progression.
  • Naoe Kotomura, Yohei Shimono, Satoru Ishihara
    Endocrinology, 165(6), Apr 29, 2024  
    Abstract CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.
  • Behnoush Khaledian, Lisa Thibes, Yohei Shimono
    Cancer Science, 114(11) 4134-4144, Aug 25, 2023  
    Abstract Cancer stem cells (CSCs) are a highly tumorigenic subpopulation of the cancer cells within a tumor that drive tumor initiation, progression, and therapy resistance. In general, stem cell niche provides a specific microenvironment in which stem cells are present in an undifferentiated and self‐renewable state. CSC niche is a specialized tumor microenvironment for CSCs which provides cues for their maintenance and propagation. However, molecular mechanisms for the CSC‐niche interaction remain to be elucidated. We have revealed that adipsin (complement factor D) and its downstream effector hepatocyte growth factor are secreted from adipocytes and enhance the CSC properties in breast cancers in which tumor initiation and progression are constantly associated with the surrounding adipose tissue. Considering that obesity, characterized by excess adipose tissue, is associated with an increased risk of multiple cancers, it is reasonably speculated that adipocyte–CSC interaction is similarly involved in many types of cancers, such as pancreas, colorectal, and ovarian cancers. In this review, various molecular mechanisms by which adipocytes regulate CSCs, including secretion of adipokines, extracellular matrix production, biosynthesis of estrogen, metabolism, and exosome, are discussed. Uncovering the roles of adipocytes in the CSC niche will propose novel strategies to treat cancers, especially those whose progression is linked to obesity.
  • Kohki Toriuchi, Toshie Kihara, Hiromasa Aoki, Hiroki Kakita, Satoru Takeshita, Hiroko Ueda, Yasumichi Inoue, Hidetoshi Hayashi, Yohei Shimono, Yasumasa Yamada, Mineyoshi Aoyama
    International Journal of Molecular Sciences, 24(3) 2829-2829, Feb 1, 2023  
    Atherosclerosis can lead to cardiovascular and cerebrovascular diseases. Atherosclerotic plaque formation is promoted by the accumulation of inflammatory cells. Therefore, modulating monocyte recruitment represents a potential therapeutic strategy. In an inflammatory state, the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) is upregulated in endothelial cells. We previously reported that miR-1914-5p in endothelial cells suppresses interleukin (IL)-1β–induced ICAM-1 expression and monocyte adhesion to endothelial cells. However, whether monocyte miR-1914-5p affects monocyte recruitment is unclear. In this study, IL-1β decreased miR-1914-5p expression in a human monocyte cell line. Moreover, miR-1914-5p inhibition enhanced adhesion to endothelial cells with the upregulation of macrophage-1 antigen (Mac-1), a counter-ligand to ICAM-1. Transmigration through the endothelial layer was also promoted with the upregulation of monocyte chemotactic protein-1 (MCP-1). Furthermore, a miR-1914-5p mimic suppressed IL-1β–induced monocyte adhesion and transmigration in monocytes with Mac-1 and MCP-1 downregulation. Further investigation of miR-1914-5p in monocytes could lead to the development of novel diagnostic markers and therapeutic strategies for atherosclerosis.
  • Yuki Nouchi, Eiji Munetsuna, Hiroya Yamada, Mirai Yamazaki, Yoshitaka Ando, Genki Mizuno, Ryosuke Fujii, Itsuki Kageyama, Takuya Wakasugi, Tomohide Sakakibara, Atsushi Teshigawara, Hiroaki Ishikawa, Yohei Shimono, Koji Suzuki, Shuji Hashimoto, Koji Ohashi
    Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association, 130(12) 814-820, Nov 11, 2022  
    The consumption of high-fructose corn syrup (HFCS) has been increasing in recent decades, especially among children. Some reports suggest that children and adolescents are more sensitive to the adverse effects of fructose intake than adults. However, the underlying mechanism of the difference in vulnerability between adolescence and adulthood have not yet been elucidated. In this study, we attempted to elucidate the different effects of HFCS intake at different growth stages in rats: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD60-100), and adulthood (PD100-140). Since alterations in hepatic glucocorticoid (GC) metabolism can cause diseases including insulin resistance, we focused on GC metabolizing enzymes such as 11 beta-hydroxysteroid dehydrogenase 1 and 2 (Hsd11b1 and Hsd11b2) and steroid 5 alpha-reductase 1 (Srd5a1). Western blotting showed an increase in Hsd11b1 expression and a decrease in Hsd11b2 expression in childhood and adolescence but not in adulthood. We also observed changes in Hsd11b1 and Hsd11b2 activities only in childhood and adolescence, consistent with the results of mRNA and protein expression analysis. The effect of high-fructose intake with regards to GC metabolism may therefore vary with developmental stage. This study provides insight into the adverse effects of fructose on GC metabolism in children in the context of increasing rates of HFCS consumption.

Misc.

 56

Presentations

 70

Teaching Experience

 3

Professional Memberships

 7

Research Projects

 29

Industrial Property Rights

 2

Other

 2
  • 特になし
  • ① 抗がん剤(脂肪細胞に高発現するアディプシンを標的とすることでがん幹細胞性を抑制する抗がん剤。日本特許取得) ② ヒト腫瘍異種移植マウス(PDX)。乳がん、大腸がんなど 本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで