研究者業績

吉川 真

ヨシカワ マコト  (Makoto YOSHIKAWA)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙機応用工学研究系 はやぶさ2プロジェクト 准教授
学位
理学博士(1989年3月 東京大学)

連絡先
yoshikawa.makotojaxa.jp
J-GLOBAL ID
200901037361657011
researchmap会員ID
1000304540

学歴

 2

受賞

 2

論文

 277
  • Fridolin Spitzer, Thorsten Kleine, Christoph Burkhardt, Timo Hopp, Tetsuya Yokoyama, Yoshinari Abe, Jérôme Aléon, Conel M. O’D Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Mayu Morita, Fréderic Moynier, Kazuko Motomura, Izumi Nakai, Kazuhide Nagashima, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Science Advances 10(39) 2024年9月27日  
    The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies. The CI chondrites incorporated these grains more efficiently, possibly because they formed at the end of the disk’s lifetime, when planetesimal formation was also triggered by photoevaporation of the disk. Isotopic variations among carbonaceous chondrites may thus reflect fractionation of distinct dust components from a common reservoir, implying CI chondrites/Ryugu may have formed in the same region of the accretion disk as other carbonaceous chondrites.
  • Bradley De Gregorio, George D. Cody, Rhonda M. Stroud, A. L. David Kilcoyne, Scott Sandford, Corentin Le Guillou, Larry R. Nittler, Jens Barosch, Hikaru Yabuta, Zita Martins, Yoko Kebukawa, Taiga Okumura, Minako Hashiguchi, Shohei Yamashita, Yasuo Takeichi, Yoshio Takahashi, Daisuke Wakabayashi, Cécile Engrand, Laure Bejach, Lydie Bonal, Eric Quirico, Laurent Remusat, Jean Duprat, Maximilien Verdier-Paoletti, Smail Mostefaoui, Mutsumi Komatsu, Jérémie Mathurin, Alexandre Dazzi, Ariane Deniset-Besseau, Emmanuel Dartois, Yusuke Tamenori, Hiroki Suga, Gilles Montagnac, Kanami Kamide, Miho Shigenaka, Megumi Matsumoto, Yuma Enokido, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Tomohiro Usui, Masanao Abe, Tatsuaki Okada, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Sei-ichiro Watanabe, Yuichi Tsuda
    Nature Communications 15 7488 2024年8月29日  査読有り
    Abstract Primordial carbon delivered to the early earth by asteroids and meteorites provided a diverse source of extraterrestrial organics from pre-existing simple organic compounds, complex solar-irradiated macromolecules, and macromolecules from extended hydrothermal processing. Surface regolith collected by the Hayabusa2 spacecraft from the carbon-rich asteroid 162173 Ryugu present a unique opportunity to untangle the sources and processing history of carbonaceous matter. Here we show carbonaceous grains in Ryugu can be classified into three main populations defined by spectral shape: Highly aromatic (HA), Alkyl-Aromatic (AA), and IOM-like (IL). These carbon populations may be related to primordial chemistry, since C and N isotopic compositions vary between the three groups. Diffuse carbon is occasionally dominated by molecular carbonate preferentially associated with coarse-grained phyllosilicate minerals. Compared to related carbonaceous meteorites, the greater diversity of organic functional chemistry in Ryugu indicate the pristine condition of these asteroid samples.
  • Hiroharu Yui, Shu-hei Urashima, Morihiko Onose, Mayu Morita, Shintaro Komatani, Izumi Nakai, Yoshinari Abe, Yasuko Terada, Hisashi Homma, Kazuko Motomura, Kiyohiro Ichida, Tetsuya Yokoyama, Kazuhide Nagashima, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Peter Hoppe, Gary R. Huss, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Sasha Krot, Ming-Chang Liu, Yuki Masuda, Frédéric Moynier, Ann Nguyen, Larry Nittler, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Tommaso Di Rocco, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Geochimica et Cosmochimica Acta 379 172-183 2024年8月  
  • Yoshinori Takano, Hiroshi Naraoka, Jason P. Dworkin, Toshiki Koga, Kazunori Sasaki, Hajime Sato, Yasuhiro Oba, Nanako O. Ogawa, Toshihiro Yoshimura, Kenji Hamase, Naohiko Ohkouchi, Eric T. Parker, José C. Aponte, Daniel P. Glavin, Yoshihiro Furukawa, Junken Aoki, Kuniyuki Kano, Shin Ichiro M. Nomura, Francois Regis Orthous-Daunay, Philippe Schmitt-Kopplin, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei Ichiro Watanabe, Yuichi Tsuda, Shogo Tachibana
    Nature communications 15(1) 5708 2024年7月10日  
    We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples from the two touchdown locations at Ryugu. The quantitative and qualitative profiles for the hydrophilic molecules between the two sampling locations shows similar trends within the order of ppb (parts per billion) to ppm (parts per million). A wide variety of structural isomers, including α- and β-hydroxy acids, are observed among the hydrophilic molecules. We also identify pyruvic acid and dihydroxy and tricarboxylic acids, which are biochemically important intermediates relevant to molecular evolution, such as the primordial TCA (tricarboxylic acid) cycle. Here, we find evidence that the asteroid Ryugu samples underwent substantial aqueous alteration, as revealed by the presence of malonic acid during keto-enol tautomerism in the dicarboxylic acid profile. The comprehensive data suggest the presence of a series for water-soluble organic molecules in the regolith of Ryugu and evidence of signatures in coevolutionary aqueous alteration between water and organics in this carbonaceous asteroid.
  • Mutsumi Komatsu, Hikaru Yabuta, Yoko Kebukawa, Lydie Bonal, Eric Quirico, Timothy J. Fagan, George D. Cody, Jens Barosch, Laure Bejach, Emmanuel Dartois, Alexandre Dazzi, Bradley De Gregorio, Ariane Deniset‐Besseau, Jean Duprat, Cecile Engrand, Minako Hashiguchi, Zita Martins, Jérémie Mathurin, Gilles Montagnac, Smail Mostefaoui, Larry R. Nittler, Takuji Ohigashi, Taiga Okumura, Laurent Rémusat, Scott Sandford, Rhonda Stroud, Hiroki Suga, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Maximilien Verdier‐Paoletti, Shohei Yamashita, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hiroshi Naraoka, Kanako Sakamoto, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Tomohiro Usui, Masanao Abe, Tatsuaki Okada, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Shogo Tachibana, Sei‐ichiro Watanabe, Yuichi Tsuda
    Meteoritics & Planetary Science 2024年7月4日  
  • Shota Kikuchi, Kei Shirai, Ko Ishibashi, Koji Wada, Yasuhiro Yokota, Rie Honda, Toshihiko Kadono, Yuri Shimaki, Naoya Sakatani, Kazunori Ogawa, Hirotaka Sawada, Takanao Saiki, Yuya Mimasu, Yuto Takei, Seiji Sugita, Toru Kouyama, Naru Hirata, Satoru Nakazawa, Makoto Yoshikawa, Satoshi Tanaka, Sei-ichiro Watanabe, Yuichi Tsuda, Masahiko Arakawa
    Advances in Space Research 2024年5月  
  • Ko Hashizume, Akizumi Ishida, Ayano Chiba, Ryuji Okazaki, Kasumi Yogata, Toru Yada, Fumio Kitajima, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Yoshinori Takano, Kanako Sakamoto, Shogo Tachibana, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Fuyuto Terui, Satoshi Tanaka, Satoru Nakazawa, Sei‐ichiro Watanabe, Yuichi Tsuda, Michael W. Broadley, Henner Busemann
    Meteoritics & Planetary Science 2024年4月30日  
    Abstract The nitrogen isotope compositions of two samples returned from the asteroid Ryugu were determined using a stepwise combustion method, along with Ivuna (CI) and Y‐980115, a CI‐like Antarctic meteorite, as references. The two Ryugu samples A0105‐07 and C0106‐07 showed bulk δ15N values of +1.7 ± 0.5‰ and +0.2 ± 0.6‰, respectively, significantly lower than Ivuna with +36.4 ± 0.4‰, but close to Y‐980115 with +4.0 ± 0.3‰. The Ryugu samples are further characterized by C/N and 36Ar/N ratios up to 3.4× and 4.9× the value of Ivuna, respectively. Among all Ryugu samples and CI chondrites, a positive correlation was observed between nitrogen concentrations and δ15N values, with samples with lower nitrogen concentrations exhibiting lower δ15N. This trend is explained by a two‐component mixing model. One component is present at a constant abundance among all CI‐related samples, with a δ15N value around 0‰ or lower. The other varies in abundance between different samples, and exhibits a δ15N value of +56 ± 4‰. The first 15N‐poor endmember is seemingly tightly incorporated into a carbonaceous host phase, whereas the 15N‐rich endmember can be mobilized and decoupled from carbon, potentially because it is in the form of ammonia. Asteroid materials with volatile compositions that are similar to those reported here for the Ryugu samples are attractive candidates for the volatile sources among Earth's building blocks.
  • Ryoji Tanaka, Dilan M. Ratnayake, Tsutomu Ota, Noah Miklusicak, Tak Kunihiro, Christian Potiszil, Chie Sakaguchi, Katsura Kobayashi, Hiroshi Kitagawa, Masahiro Yamanaka, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Tomohiro Usui, Sei-ichiro Watanabe, Toru Yada, Kasumi Yogata, Makoto Yoshikawa, Eizo Nakamura
    The Astrophysical Journal 965(1) 52-52 2024年4月1日  
    Abstract The analysis of samples returned from the C-type asteroid Ryugu has drastically advanced our knowledge of the evolution of early solar system materials. However, no consensus has been obtained on the chronological data, which is important for understanding the evolution of the asteroid Ryugu. Here, the aqueous alteration age of Ryugu particles was determined by the Mn–Cr method using bulk samples, yielding an age of 4.13 + 0.62/−0.55 Myr after the formation of Ca–Al-rich inclusions (CAI). The age corresponds to 4563.17 + 0.60/−0.67 Myr ago. The higher 55Mn/52Cr, ε 54Cr, and initial ε 53Cr values of the Ryugu samples relative to any carbonaceous chondrite samples implies that its progenitor body formed from the least thermally processed precursors in the outermost region of the protoplanetary disk. Despite accreting at different distances from the Sun, the hydrous asteroids (Ryugu and the parent bodies of CI, CM, CR, and ungrouped C2 meteorites) underwent aqueous alteration during a period of limited duration (3.8 ± 1.8 Myr after CAI). These ages are identical to the crystallization age of the carbonaceous achondirtes NWA 6704/6693 within the error. The ε 54Cr and initial ε 53Cr values of Ryugu and NWA 6704/6693 are also identical, while they show distinct Δ'17O values. This suggests that the precursors that formed the progenitor bodies of Ryugu and NWA 6703/6693 were formed in close proximity and experienced a similar degree of thermal processing in the protosolar nebula. However, the progenitor body of Ryugu was formed by a higher ice/dust ratio, than NWA6703/6693, in the outer region of the protoplanetary disk.
  • Alice Aléon-Toppani, Rosario Brunetto, Zélia Dionnet, Stefano Rubino, Donia Baklouti, François Brisset, Maxime Vallet, Eva Heripre, Tomoki Nakamura, Cateline Lantz, Zahia Djouadi, Ferenc Borondics, Christophe Sandt, David Troadec, Obadias Mivumbi, Megumi Matsumoto, Kana Amano, Tomoyo Morita, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohira Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Geochimica et Cosmochimica Acta 371 1-30 2024年4月  
  • Noriko T. Kita, Kouki Kitajima, Kazuhide Nagashima, Noriyuki Kawasaki, Naoya Sakamoto, Wataru Fujiya, Yoshinari Abe, Jérôme Aléon, Conel M. O'D. Alexander, Sachiko Amari, Yuri Amelin, Ken‐ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon‐Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming‐Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing‐Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai‐Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei‐ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Meteoritics & Planetary Science 2024年4月  
    Abstract Oxygen 3‐isotope ratios of magnetite and carbonates in aqueously altered carbonaceous chondrites provide important clues to understanding the evolution of the fluid in the asteroidal parent bodies. We conducted oxygen 3‐isotope analyses of magnetite, dolomite, and breunnerite in two sections of asteroid Ryugu returned samples, A0058 and C0002, using a secondary ion mass spectrometer (SIMS). Magnetite was analyzed by using a lower primary ion energy that reduced instrumental biases due to the crystal orientation effect. We found two groups of magnetite data identified from the SIMS pit morphologies: (1) higher δ18O (from 3‰ to 7‰) and ∆17O (~2‰) with porous SIMS pits mostly from spherulitic magnetite, and (2) lower δ18O (~ −3‰) and variable ∆17O (0‰–2‰) mostly from euhedral magnetite. Dolomite and breunnerite analyses were conducted using multi‐collection Faraday cup detectors with precisions ≤0.3‰. The instrumental bias correction was applied based on carbonate compositions in two ways, using Fe and (Fe + Mn) contents, respectively, because Ryugu dolomite contains higher amounts of Mn than the terrestrial standard. Results of dolomite and breunnerite analyses show a narrow range of ∆17O; 0.0‰–0.3‰ for dolomite in A0058 and 0.2‰–0.8‰ for dolomite and breunnerite in C0002. The majority of breunnerite, including large ≥100 μm grains, show systematically lower δ18O (~21‰) than dolomite (25‰–30‰ and 23‰–27‰ depending on the instrumental bias corrections). The equilibrium temperatures between magnetite and dolomite from the coarse‐grained lithology in A0058 are calculated to be 51 ± 11°C and 78 ± 14°C, depending on the instrumental bias correction scheme for dolomite; a reliable temperature estimate would require a Mn‐bearing dolomite standard to evaluate the instrumental bias corrections, which is not currently available. These results indicate that the oxygen isotope ratios of aqueous fluids in the Ryugu parent asteroid were isotopically heterogeneous, either spatially, or temporary. Initial water ice accreted to the Ryugu parent body might have ∆17O > 2‰ that was melted and interacted with anhydrous solids with the initial ∆17O < 0‰. In the early stage of aqueous alteration, spherulitic magnetite and calcite formed from aqueous fluid with ∆17O ~ 2‰ that was produced by isotope exchange between water (∆17O > 2‰) and anhydrous solids (∆17O < 0‰). Dolomite and breunnerite, along with some magnetite, formed at the later stage of aqueous alteration under higher water‐to‐rock ratios where the oxygen isotope ratios were nearly at equilibrium between fluid and solid phases. Including literature data, δ18O of carbonates decreased in the order calcite, dolomite, and breunnerite, suggesting that the temperature of alteration might have increased with the degree of aqueous alteration.
  • Jérémie Mathurin, Laure Bejach, Emmanuel Dartois, Cécile Engrand, Alexandre Dazzi, Ariane Deniset-Besseau, Jean Duprat, Yoko Kebukawa, Hikaru Yabuta, Lydie Bonal, Eric Quirico, Christophe Sandt, Ferenc Borondics, Jens Barosch, Pierre Beck, D. George Cody, T. Brad De Gregorio, Minako Hashiguchi, A.L. David Kilcoyne, Mutsumi Komatsu, Zita Martins, Megumi Matsumoto, Gilles Montagnac, Smail Mostefaoui, R. Larry Nittler, Takuji Ohigashi, Taiga Okumura, T.H. Van Phan, Laurent Remusat, Scott Sandford, Miho Shigenaka, Rhonda Stroud, Hiroki Suga, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Maximilien Verdier-Paoletti, Shohei Yamashita, Tomoki Nakamura, Tomoyo Morita, Mizuha Kikuiri, Kana Amano, Eiichi Kagawa, Takaaki Noguchi, Hiroshi Naraoka, Ryuji Okazaki, Kanako Sakamoto, Hisayoshi Yurimoto, Masanao Abe, Kanami Kamide, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Shogo Tachibana, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Tomohiro Usui, Sei-ichiro Watanabe, Toru Yada, Kasumi Yogata, Makoto Yoshikawa
    Astronomy & Astrophysics 2024年2月26日  
    The JAXA Hayabusa2 mission returned well-preserved samples collected from the carbonaceous asteroid Ryugu, providing unique non-terrestrially weathered samples from a known parent body. This work aims to provide a better understanding of the formation and evolution of primitive asteroidal matter by studying the fine scale association of organic matter and minerals in Ryugu samples. We characterized the samples by IR nanospectroscopy using the AFM-IR technique. This technique overcomes the diffraction limit (of several microns) of conventional infrared microspectroscopy (µ-FTIR). The samples were mapped in the mid-IR range at a lateral spatial resolution about a hundred times better than with µ-FTIR. This provided us with unique in situ access to the distribution of the different infrared signatures of organic components at the sub-micron scale present in the Ryugu whole-rock samples as well as to the characterization of the compositional variability of Ryugu in the insoluble organic matter (IOM) chemically extracted from the Ryugu samples. The AFM-IR maps of whole-rock particles and IOM residues from Ryugu samples were recorded with a lateral resolution of tens of nanometers. Spectra were recorded in the 1900-900 cm$^−1$ spectral range by AFM-IR (Icon-IR) for all samples, and additional spectra were recorded from 2700 to 4000 cm$^−1$ for one IOM sample by an optical photothermal IR (O-PTIR) technique using a mIRage$^ textregistered $ IR microscope. Organic matter is present in two forms in the whole-rock samples: as a diffuse phase intermixed with the phyllosilicate matrix and as individual organic nanoparticles. We identify the Ryugu organic nanoparticles as nanoglobule-like inclusions texturally resembling nanoglobules present in primitive meteorites. Using AFM-IR, we record for the first time the infrared spectra of Ryugu organic nanoparticles that clearly show enhanced carbonyl (C=O) and CH contributions with respect to the diffuse organic matter in Ryugu whole-rock and IOM residue.
  • Toru Matsumoto, Takaaki Noguchi, Akira Miyake, Yohei Igami, Mitsutaka Haruta, Yusuke Seto, Masaaki Miyahara, Naotaka Tomioka, Hikaru Saito, Satoshi Hata, Dennis Harries, Aki Takigawa, Yusuke Nakauchi, Shogo Tachibana, Tomoki Nakamura, Megumi Matsumoto, Hope A. Ishii, John P. Bradley, Kenta Ohtaki, Elena Dobrică, Hugues Leroux, Corentin Le Guillou, Damien Jacob, Francisco de la Peña, Sylvain Laforet, Maya Marinova, Falko Langenhorst, Pierre Beck, Thi H.V. Phan, Rolando Rebois, Neyda M. Abreu, Jennifer Gray, Thomas Zega, Pierre M. Zanetta, Michelle S. Thompson, Rhonda Stroud, Kate Burgess, Brittany A. Cymes, John C. Bridges, Leon Hicks, Martin R. Lee, Luke Daly, Phil A. Bland, Michael E. Zolensky, David R. Frank, James Martinez, Akira Tsuchiyama, Masahiro Yasutake, Junya Matsuno, Shota Okumura, Itaru Mitsukawa, Kentaro Uesugi, Masayuki Uesugi, Akihisa Takeuchi, Mingqi Sun, Satomi Enju, Tatsuhiro Michikami, Hisayoshi Yurimoto, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei Ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy 8(2) 207-215 2024年2月  
    Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized.
  • Yan Hu, Frédéric Moynier, Wei Dai, Marine Paquet, Tetsuya Yokoyama, Yoshinari Abe, Jérôme Aléon, Conel M. O'D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Koki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Mayu Morita, Kazuko Motomura, Izumi Nakai, Kazuhide Nagashima, David Nesvorný, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Icarus 409 115884-115884 2024年2月  
  • Kazuhiko Ninomiya, Takahito Osawa, Kentaro Terada, Taiga Wada, Shunsaku Nagasawa, I‐Haun Chiu, Tomoki Nakamura, Tadayuki Takahashi, Yasuhiro Miyake, M. Kenya Kubo, Soshi Takeshita, Akihiro Taniguchi, Izumi Umegaki, Shin Watanabe, Toshiyuki Azuma, Miho Katsuragawa, Takahiro Minami, Kazumi Mizumoto, Koichiro Shimomura, Shin'ichiro Takeda, Tomoyo Morita, Mizuha Kikuiri, Kana Amano, Eiichi Kagawa, Yoshihiro Furukawa, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei‐ichiro Watanabe, Yuichi Tsuda
    Meteoritics & Planetary Science 2024年1月31日  
    Abstract Samples from asteroid Ryugu, brought back by asteroid explorer Hayabusa2, are important for investigating the origin and evolution of the solar system. Here, we report the elemental compositions of a 123‐mg Ryugu sample determined with a nondestructive muon elemental analysis method. This method is a powerful tool for determining bulk chemical composition, including light elements such as C, N, and O. From the muonic x‐ray spectra with three carbonaceous chondrites, the relationship between the elemental composition and muonic x‐ray intensity was determined for each element. Calibration curves showed linearity, and the elemental composition of Ryugu was quantitatively determined. The results reflect the average bulk elemental composition of asteroid Ryugu owing to the large amount of samples. Ryugu has an elemental composition similar to that of Orgueil (CI1) and should be classified as CI1. However, the O/Si ratio of Ryugu is 25% lower than that of Orgueil, indicating that Orgueil may have been seriously contaminated by terrestrial materials after its fall to Earth. These results indicate that the Ryugu sample is more representative than the CI chondrites as a solid material of the solar system.
  • J. Aléon, S. Mostefaoui, H. Bureau, D. Vangu, H. Khodja, K. Nagashima, N. Kawasaki, Y. Abe, C. M. O'D. Alexander, S. Amari, Y. Amelin, K. Bajo, M. Bizzarro, A. Bouvier, R. W. Carlson, M. Chaussidon, B.‐G. Choi, N. Dauphas, A. M. Davis, T. Di Rocco, W. Fujiya, R. Fukai, I. Gautam, M. K. Haba, Y. Hibiya, H. Hidaka, H. Homma, P. Hoppe, G. R. Huss, K. Ichida, T. Iizuka, T. R. Ireland, A. Ishikawa, S. Itoh, N. T. Kita, K. Kitajima, T. Kleine, S. Komatani, A. N. Krot, M.‐C. Liu, Y. Masuda, M. Morita, K. Motomura, F. Moynier, I. Nakai, A. Nguyen, L. R. Nittler, M. Onose, A. Pack, C. Park, L. Piani, L. Qin, S. S. Russell, N. Sakamoto, M. Schönbächler, L. Tafla, H. Tang, K. Terada, Y. Terada, T. Usui, S. Wada, M. Wadhwa, R. J. Walker, K. Yamashita, Q.‐Z. Yin, T. Yokoyama, S. Yoneda, E. D. Young, H. Yui, A.‐C. Zhang, T. Nakamura, H. Naraoka, T. Noguchi, R. Okazaki, K. Sakamoto, H. Yabuta, M. Abe, A. Miyazaki, A. Nakato, M. Nishimura, T. Okada, T. Yada, K. Yogata, S. Nakazawa, T. Saiki, S. Tanaka, F. Terui, Y. Tsuda, S. Watanabe, M. Yoshikawa, S. Tachibana, H. Yurimoto
    Meteoritics & Planetary Science 2024年1月26日  
    Abstract In order to gain insights on the conditions of aqueous alteration on asteroid Ryugu and the origin of water in the outer solar system, we developed the measurement of water content in magnetite at the micrometer scale by secondary ion mass spectrometry (NanoSIMS) and determined the H and Si content of coarse‐grained euhedral magnetite grains (polyhedral magnetite) and coarse‐grained fibrous (spherulitic) magnetite from the Ryugu polished section A0058‐C1001. The hydrogen content in magnetite ranges between ~900 and ~3300 wt ppm equivalent water and is correlated with the Si content. Polyhedral magnetite has low and homogenous silicon and water content, whereas fibrous magnetite shows correlated Si and water excesses. These excesses can be explained by the presence of hydrous Si‐rich amorphous nanoinclusions trapped during the precipitation of fibrous magnetite away from equilibrium and testify that fibrous magnetite formed from a hydrous gel with possibly more than 20 wt% water. An attempt to determine the water content in sub‐μm framboids indicates that additional calibration and contamination issues must be addressed before a safe conclusion can be drawn, but hints at elevated water content as well. The high water content in fibrous magnetite, expected to be among the first minerals to crystallize at low water–rock ratio, points to the control of water content by local conditions of magnetite precipitation rather than large‐scale alteration conditions. Systematic lithological variations associated with water‐rich and water‐poor magnetite suggest that the global context of alteration may be better understood if local water concentrations are compared with millimeter‐scale distribution of the various morphologies of magnetite. Finally, the high water content in the magnetite precursor gel indicates that the initial O isotopic composition in alteration water must not have been very different from that of the earliest magnetite crystals.
  • Rhonda M. Stroud, Jens Barosch, Lydie Bonal, Katherine Burgess, George D. Cody, Bradley T. De Gregorio, Luke Daly, Emmanuel Dartois, Elena Dobrică, Jean Duprat, Cecile Engrand, Dennis Harries, Minako Hashiguchi, Hope Ishii, Yoko Kebukawa, A. David Kilcoyne, Falko Langenhorst, Martin R. Lee, Larry R. Nittler, Eric Quirico, Taiga Okumura, Laurent Remusat, Scott Sandford, Hikaru Yabuta, Masanao Abe, Neyda M. Abreu, Paul A. J. Bagot, Pierre Beck, Laure Bejach, Phil A. Bland, John C. Bridges, Brittany A. Cymes, Alexandre Dazzi, Francisco de la Peña, Ariane Deniset‐Besseau, Satomi Enju, Yuma Enokido, David R. Frank, Jennifer Gray, Mitsutaka Haruta, Satoshi Hata, Leon Hicks, Yohei Igami, Damien Jacob, Kanami Kamide, Mutsumi Komatsu, Sylvain Laforet, Hugues Leroux, Corentin Le Guillou, Zita Martins, Maya Marinova, James Martinez, Jérémie Mathurin, Megumi Matsumoto, Toru Matsumoto, Junya Matsuno, Samuel McFadzean, Tatsuhiro Michikami, Itaru Mitsukawa, Akira Miyake, Masaaki Miyahara, Akiko Miyazaki, Gilles Montagnac, Smail Mostefaoui, Tomoki Nakamura, Aiko Nakato, Hiroshi Naraoka, Yusuke Nakauchi, Satoru Nakazawa, Masahiro Nishimura, Takaaki Noguchi, Kenta Ohtaki, Takuji Ohigashi, Tatsuaki Okada, Shota Okumura, Ryuji Okazaki, Thi H. V. Phan, Rolando Rebois, Kanako Sakamoto, Takanao Saiki, Hikaru Saito, Yusuke Seto, Miho Shigenaka, William Smith, Hiroki Suga, Mingqi Sun, Shogo Tachibana, Yoshio Takahashi, Yasuo Takeichi, Akihisa Takeuchi, Aki Takigawa, Yusuke Tamenori, Satoshi Tanaka, Fuyuto Terui, Michelle S. Thompson, Naotaka Tomioka, Akira Tsuchiyama, Yuichi Tsuda, Kentaro Uesugi, Masayuki Uesugi, Tomohiro Usui, Maximilien Verdier‐Paoletti, Daisuke Wakabayashi, Sei‐ichiro Watanabe, Toru Yada, Shohei Yamashita, Masahiro Yasutake, Kasumi Yogata, Makoto Yoshikawa, Hisayoshi Yurimoto, Pierre‐M. Zanetta, Thomas Zega, Michael E. Zolensky
    Meteoritics & Planetary Science 2024年1月25日  
    Abstract Transmission electron microscopy analyses of Hayabusa2 samples show that Ryugu organic matter exhibits a range of morphologies, elemental compositions, and carbon functional chemistries consistent with those of carbonaceous chondrites that have experienced low‐temperature aqueous alteration. Both nanoglobules and diffuse organic matter are abundant. Non‐globular organic particles are also present, and including some that contain nanodiamond clusters. Diffuse organic matter is finely distributed in and around phyllosilicates, forms coatings on other minerals, and is also preserved in vesicles in secondary minerals such as carbonate and pyrrhotite. The average elemental compositions determined by energy‐dispersive spectroscopy of extracted, demineralized insoluble organic matter samples A0107 and C0106 are C100N3O9S1 and C100N3O7S1, respectively, with the difference in O/C slightly outside the difference in the standard error of the mean. The functional chemistry of the nanoglobules varies from mostly aromatic C=C to mixtures of aromatic C=C, ketone C=O, aliphatic (CHn), and carboxyl (COOH) groups. Diffuse organic matter associated with phyllosilicates has variable aromatic C, ketone and carboxyl groups, and some localized aliphatics, but is dominated by molecular carbonate (CO3) absorption, comparable to prior observations of clay‐bound organic matter in CI meteorites.
  • Dennis Harries, Toru Matsumoto, Falko Langenhorst, Takaaki Noguchi, Akira Miyake, Yohei Igami, Mitsutaka Haruta, Yusuke Seto, Masaaki Miyahara, Naotaka Tomioka, Hikaru Saito, Satoshi Hata, Aki Takigawa, Yusuke Nakauchi, Shogo Tachibana, Tomoki Nakamura, Megumi Matsumoto, Hope A. Ishii, John P. Bradley, Kenta Ohtaki, Elena Dobrică, Hugues Leroux, Corentin Le Guillou, Damien Jacob, Francisco de la Peña, Sylvain Laforet, Bahae eddine Mouloud, Maya Marinova, Pierre Beck, Van T.H. Phan, Rolando Rebois, Neyda M. Abreu, Jennifer Gray, Thomas Zega, Pierre M. Zanetta, Michelle S. Thompson, Rhonda Stroud, Kate Burgess, Brittany A. Cymes, John C. Bridges, Leon Hicks, Martin R. Lee, Luke Daly, Phil A. Bland, Michael E. Zolensky, David R. Frank, James Martinez, Akira Tsuchiyama, Masahiro Yasutake, Junya Matsuno, Shota Okumura, Itaru Mitsukawa, Kentaro Uesugi, Masayuki Uesugi, Akihisa Takeuchi, Mingqi Sun, Satomi Enju, Tatsuhiro Michikami, Hisayoshi Yurimoto, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei ichiro Watanabe, Yuichi Tsuda
    Meteoritics and Planetary Science 2024年  
    Regolith samples returned from asteroid 162173 Ryugu by the Hayabusa2 mission provide direct means to study how space weathering operates on the surfaces of hydrous asteroids. The mechanisms of space weathering, its effects on mineral surfaces, and the characteristic time scales on which alteration occurs are central to understanding the spectroscopic properties and the taxonomy of asteroids in the solar system. Here, we investigate the behavior of the iron monosulfides mineral pyrrhotite (Fe1−xS) at the earliest stages of space weathering. Using electron microscopy methods, we identified a partially exposed pyrrhotite crystal that morphologically shows evidence for mass loss due to exposure to solar wind ion irradiation. We find that crystallographic changes to the pyrrhotite can be related to sulfur loss from its space-exposed surface and the diffusive redistribution of resulting excess iron into the interior of the crystal. Diffusion profiles allow us to estimate an order of magnitude of the exposure time of a few thousand years consistent with previous estimates of space exposure. During this interval, the adjacent phyllosilicates did not acquire discernable damage, suggesting that they are less susceptible to alteration by ion irradiation than pyrrhotite.
  • Mayu Morita, Hiroharu Yui, Shu-hei Urashima, Morihiko Onose, Shintaro Komatani, Izumi Nakai, Yoshinari Abe, Yasuko Terada, Hisashi Homma, Kazuko Motomura, Kiyohiro Ichida, Tetsuya Yokoyama, Kazuhide Nagashima, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Peter Hoppe, Gary R. Huss, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Sasha Krot, Ming-Chang Liu, Yuki Masuda, Frédéric Moynier, Ann Nguyen, Larry Nittler, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Tommaso Di Rocco, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Analytical Chemistry 2023年12月28日  
  • Sarah S. Zeichner, José C. Aponte, Surjyendu Bhattacharjee, Guannan Dong, Amy E. Hofmann, Jason P. Dworkin, Daniel P. Glavin, Jamie E. Elsila, Heather V. Graham, Hiroshi Naraoka, Yoshinori Takano, Shogo Tachibana, Allison T. Karp, Kliti Grice, Alex I. Holman, Katherine H. Freeman, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda, Kenji Hamase, Kazuhiko Fukushima, Dan Aoki, Minako Hashiguchi, Hajime Mita, Yoshito Chikaraishi, Naohiko Ohkouchi, Nanako O. Ogawa, Saburo Sakai, Eric T. Parker, Hannah L. McLain, Francois-Regis Orthous-Daunay, Véronique Vuitton, Cédric Wolters, Philippe Schmitt-Kopplin, Norbert Hertkorn, Roland Thissen, Alexander Ruf, Junko Isa, Yasuhiro Oba, Toshiki Koga, Toshihiro Yoshimura, Daisuke Araoka, Haruna Sugahara, Aogu Furusho, Yoshihiro Furukawa, Junken Aoki, Kuniyuki Kano, Shin-ichiro M. Nomura, Kazunori Sasaki, Hajime Sato, Takaaki Yoshikawa, Satoru Tanaka, Mayu Morita, Morihiko Onose, Fumie Kabashima, Kosuke Fujishima, Tomoya Yamazaki, Yuki Kimura, John M. Eiler
    Science 382(6677) 1411-1416 2023年12月22日  
    Polycyclic aromatic hydrocarbons (PAHs) contain ≲20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures ≳1000 kelvin), by (~10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryugu and the meteorite Murchison. The doubly- 13 C substituted compositions (Δ2× 13 C values) of the PAHs naphthalene, fluoranthene, and pyrene are 9 to 51‰ higher than values expected for a stochastic distribution of isotopes. The Δ2× 13 C values are higher than expected if the PAHs formed in a circumstellar environment, but consistent with formation in the interstellar medium. By contrast, the PAHs phenanthrene and anthracene in Ryugu samples have Δ2× 13 C values consistent with formation by higher-temperature reactions.
  • Zachary A. Torrano, Michelle K. Jordan, Timothy D. Mock, Richard W. Carlson, Ikshu Gautam, Makiko K. Haba, Tetsuya Yokoyama, Yoshinari Abe, Jérôme Aléon, Conel Alexander, Sachiko Amari, Yuri Amelin, Ken‐ichi Bajo, Martin Bizzarro, Audrey Bouvier, Marc Chaussidon, Byeon‐Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Koki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming‐Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Kazuhide Nagashima, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing‐Zhu Yin, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai‐Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei‐ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Meteoritics & Planetary Science 2023年12月7日  
    Abstract We report Nd and Sm isotopic compositions of four samples of Ryugu returned by the Hayabusa2 mission, including “A” (first touchdown) and “C” (second touchdown) samples, and several carbonaceous chondrites to evaluate potential genetic relationships between Ryugu and known chondrite groups and track the cosmic ray exposure history of Ryugu. We resolved Nd and Sm isotopic anomalies in small (<20 ng Nd and Sm) sample sizes via thermal ionization mass spectrometer using 1013 Ω amplifiers. Ryugu samples exhibit resolvable negative μ142Nd values consistent with carbonaceous chondrite values, suggesting that Ryugu is related to the parent bodies of carbonaceous chondrites. Ryugu's negative μ149Sm values are the result of exposure to galactic cosmic rays, as demonstrated by the correlation between 150Sm/152Sm and 149Sm/152Sm ratios that fall along the expected neutron capture correlation line. The neutron fluence calculated in the “A” samples (2.75 ± 1.94 × 1015 n cm−2) is slightly higher compared to the “C” samples (0.95 ± 2.04 × 1015 n cm−2), though overlapping within measurement uncertainty. The Sm results for Ryugu, at this level of precision, thus are consistent with a well‐mixed surface layer at least to the depths from which the “A” and “C” samples derive.
  • Alexander Verchovsky, Feargus Abernethy, Mahesh Anand, Ian Franchi, Monica Grady, Richard Greenwood, Simeon Barber, Martin Suttle, Motoo Ito, Naotaka Tomioka, Masayuki Uesugi, Akira Yamaguchi, Makoto Kimura, Naoya Imae, Naoki Shirai, Takuji Ohigashi, Ming-Chang Liu, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yuzuru Karouji, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Sei-ichiro Watanabe, Yuichi Tsuda
    2023年12月6日  
  • N. Nakanishi, T. Yokoyama, A. Ishikawa, R.J. Walker, Y. Abe, J. Aléon, C.M.O'D. Alexander, S. Amari, Y. Amelin, K.-I. Bajo, M. Bizzarro, A. Bouvier, R.W. Carlson, M. Chaussidon, B.-G. Choi, N. Dauphas, A.M. Davis, T. Di Rocco, W. Fujiya, R. Fukai, I. Gautam, M.K. Haba, Y. Hibiya, H. Hidaka, H. Homma, P. Hoppe, G.R. Huss, K. Ichida, T. Iizuka, T.R. Ireland, S. Itoh, N. Kawasaki, N.T. Kita, K. Kitajima, T. Kleine, S. Komatani, A.N. Krot, M.-C. Liu, Y. Masuda, M. Morita, K. Motomura, F. Moynier, I. Nakai, K. Nagashima, A. Nguyen, L. Nittler, M. Onose, A. Pack, C. Park, L. Piani, L. Qin, S.S. Russell, N. Sakamoto, M. Schönbächler, L. Tafla, H. Tang, K. Terada, Y. Terada, T. Usui, S. Wada, M. Wadhwa, K. Yamashita, Q.-Z. Yin, S. Yoneda, E.D. Young, H. Yui, A.-C. Zhang, T. Nakamura, H. Naraoka, T. Noguchi, R. Okazaki, K. Sakamoto, H. Yabuta, M. Abe, A. Miyazaki, A. Nakato, M. Nishimura, T. Okada, T. Yada, K. Yogata, S. Nakazawa, T. Saiki, S. Tanaka, F. Terui, Y. Tsuda, S.-I. Watanabe, M. Yoshikawa, S. Tachibana, H. Yurimoto
    Geochemical Perspectives Letters 28 31-36 2023年12月  
  • Moe Matsuoka, Ei ichi Kagawa, Kana Amano, Tomoki Nakamura, Eri Tatsumi, Takahito Osawa, Takahiro Hiroi, Ralph Milliken, Deborah Domingue, Driss Takir, Rosario Brunetto, Antonella Barucci, Kohei Kitazato, Seiji Sugita, Yuri Fujioka, Osamu Sasaki, Shiho Kobayashi, Takahiro Iwata, Tomokatsu Morota, Yasuhiro Yokota, Toru Kouyama, Rie Honda, Shingo Kameda, Yuichiro Cho, Kazuo Yoshioka, Hirotaka Sawada, Masahiko Hayakawa, Naoya Sakatani, Manabu Yamada, Hidehiko Suzuki, Chikatoshi Honda, Kazunori Ogawa, Kei Shirai, Cateline Lantz, Stefano Rubino, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei ichiro Watanabe, Yuichi Tsuda
    Communications Earth and Environment 4(1) 2023年12月  
    Returned samples from Cb-type asteroid (162173) Ryugu exhibit very dark spectra in visible and near-infrared ranges, generally consistent with the Hayabusa2 observations. A critical difference is that a structural water absorption of hydrous silicates is around twice as deep in the returned samples compared with those of Ryugu’s surface, suggesting Ryugu surface is more dehydrated. Here we use laboratory experiments data to indicate the spectral differences between returned samples and asteroid surface are best explained if Ryugu surface has (1) higher porosity, (2) larger particle size, and (3) more space-weathered condition, with the last being the most effective. On Ryugu, space weathering by micrometeoroid bombardments promoting dehydration seem to be more effective than that by solar-wind implantation. Extremely homogeneous spectra of the Ryugu’s global surface is in contrast with the heterogeneous S-type asteroid (25143) Itokawa’s spectra, which suggests space weathering has proceeded more rapidly on Cb-type asteroids than S-type asteroids.
  • José C. Aponte, Jason P. Dworkin, Daniel P. Glavin, Jamie E. Elsila, Eric T. Parker, Hannah L. McLain, Hiroshi Naraoka, Ryuji Okazaki, Yoshinori Takano, Shogo Tachibana, Guannan Dong, Sarah S. Zeichner, John M. Eiler, Hisayoshi Yurimoto, Tomoki Nakamura, Hikaru Yabuta, Fuyuto Terui, Takaaki Noguchi, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Satoru Nakazawa, Yuichi Tsuda, Sei ichiro Watanabe
    Earth, Planets and Space 75(1) 2023年12月  査読有り
    Evaluating the molecular distribution of organic compounds in pristine extraterrestrial materials is cornerstone to understanding the abiotic synthesis of organics and allows us to better understand the molecular diversity available during the formation of our solar system and before the origins of life on Earth. In this work, we identify multiple organic compounds in solvent extracts of asteroid Ryugu samples A0106 and C0107 and the Orgueil meteorite using two-dimensional gas chromatography and time-of-flight high resolution mass spectrometry (GC×GC–HRMS). Our analyses found similarities between the molecular distribution of organic compounds in Ryugu and the CI carbonaceous chondrite Orgueil. Specifically, several PAHs and organosulfides were found in Ryugu and Orgueil suggesting an interstellar and parent body origin for these compounds. We also evaluated the common relationship between Ryugu, Orgueil, and comets, such as Wild-2; however, until comprehensive compound-specific isotopic analyses for these organic species are undertaken, and until the effects of parent body processes and Earth’s weathering processes on meteoritic organics are better understood, their parent–daughter relationships will remain unanswered. Finally, the study of organic compounds in Ryugu samples and the curation practices for the future preservation of these unvaluable materials are also of special interest for future sample return missions, including NASA’s OSIRIS-REx asteroid sample return mission. Graphical Abstract: [Figure not available: see fulltext.].
  • Martin Bizzarro, Martin Schiller, Tetsuya Yokoyama, Yoshinari Abe, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Mayu Morita, Fréderic Moynier, Kazuko Motomura, Izumi Nakai, Kazuhide Nagashima, David Nesvorný, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    The Astrophysical Journal Letters 958(2) L25-L25 2023年11月24日  
    Abstract The nucleosynthetic isotope composition of planetary materials provides a record of the heterogeneous distribution of stardust within the early solar system. In 2020 December, the Japan Aerospace Exploration Agency Hayabusa2 spacecraft returned to Earth the first samples of a primitive asteroid, namely, the Cb-type asteroid Ryugu. This provides a unique opportunity to explore the kinship between primitive asteroids and carbonaceous chondrites. We report high-precision μ26Mg* and μ25Mg values of Ryugu samples together with those of CI, CM, CV, and ungrouped carbonaceous chondrites. The stable Mg isotope composition of Ryugu aliquots defines μ25Mg values ranging from –160 ± 20 ppm to –272 ± 30 ppm, which extends to lighter compositions relative to Ivuna-type (CI) and other carbonaceous chondrite groups. We interpret the μ25Mg variability as reflecting heterogeneous sampling of a carbonate phase hosting isotopically light Mg (μ25Mg ∼ –1400 ppm) formed by low temperature equilibrium processes. After correcting for this effect, Ryugu samples return homogeneous μ26Mg* values corresponding to a weighted mean of 7.1 ± 0.8 ppm. Thus, Ryugu defines a μ26Mg* excess relative to the CI and CR chondrite reservoirs corresponding to 3.8 ± 1.1 and 11.9 ± 0.8 ppm, respectively. These variations cannot be accounted for by in situ decay of 26Al given their respective 27Al/24Mg ratios. Instead, it requires that Ryugu and the CI and CR parent bodies formed from material with a different initial 26Al/27Al ratio or that they are sourced from material with distinct Mg isotope compositions. Thus, our new Mg isotope data challenge the notion that Ryugu and CI chondrites share a common nucleosynthetic heritage.
  • Mathieu Roskosz, Pierre Beck, Jean‐Christophe Viennet, Tomoki Nakamura, Barbara Lavina, Michael Y. Hu, Jiyong Zhao, Esen E. Alp, Yoshio Takahashi, Tomoyo Morita, Kana Amano, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei‐Ichiro Watanabe, Yuichi Tsuda
    Meteoritics & Planetary Science 2023年11月20日  
    Abstract The Hayabusa2 mission sampled Ryugu, an asteroid that did not suffer extensive thermal metamorphism, and returned rocks to the Earth with no significant air exposure. It therefore offers a unique opportunity to study the redox state of carbonaceous Cb‐type asteroids and evaluate the overall redox state of the most primitive rocks of the solar system. An analytical framework was developed to investigate the iron mineralogy and valence state in extraterrestrial material at the micron scale by combining x‐ray diffraction, conventional Mössbauer (MS), and nuclear forward scattering (NFS) spectroscopies. An array of standard minerals was analyzed and cross‐calibrated between MS and NFS. Then, MS and NFS spectra on three Ryugu grains were collected at the bulk and the micron scales. In Ryugu samples, iron is essentially accommodated in magnetite, clay minerals (serpentine–smectite), and sulfides. Only a single set of Mössbauer parameters was necessary to account for the entire variability observed in MS and NFS spectra, at all spatial scales investigated. These parameters therefore make up a fully consistent iron mineralogical model for the Ryugu samples. As far as MS and NFS spectroscopies are concerned, Ryugu grains are overall similar to each other and share most of their mineralogical features with CI‐type chondrites. In detail however, no ferrihydrite is found in Ryugu particles even at the very sensitive scale of Mössbauer spectroscopy. The typical Fe3+/Fetot of clay minerals is much lower than typical redox ratios measured in CI chondrites (Fe3+/Fetot = 85%–90%). Furthermore, magnetite from Ryugu is stoichiometric with no significant maghemite component, whereas up to 12% of maghemite was previously identified in the Orgueil's so‐called magnetite. These differences suggest that most CI meteorites suffered terrestrial alteration and that the preterrestrial composition of these carbon‐rich samples was less oxidized than previously measured. However, it is not clear yet whether or not the parent bodies of CI chondrites were as reduced as Ryugu. Finally, the high spatial resolution of NFS allows to disentangle the redox state and the crystal chemistry of iron accommodated in serpentine and smectite. The most likely polytype of serpentine is lizardite, containing <35% of Fe3+, a fraction of which being tetrahedrally coordinated. Smectite is more oxidized (Fe3+/Fetot > 65%) and mainly contains octahedral ferric iron. This finding implies that these clays formed from highly alkaline fluids and the spatial variability highlighted here may suggest a temporal evolution or a spatial variability of the nature of this fluid.
  • Eric Quirico, Lydie Bonal, Yoko Kebukawa, Kana Amano, Hikaru Yabuta, Van T. H. Phan, Pierre Beck, Laurent Rémusat, Emmanuel Dartois, Cecile Engrand, Zita Martins, Laure Bejach, Alexandre Dazzi, Ariane Deniset‐Besseau, Jean Duprat, Jérémie Mathurin, Gilles Montagnac, Jens Barosch, George D. Cody, Bradley De Gregorio, Yuma Enokido, Minako Hashiguchi, Kanami Kamide, David Kilcoyne, Mutsumi Komatsu, Megumi Matsumoto, Smail Mostefaoui, Larry Nittler, Takuji Ohigashi, Taiga Okumura, Scott Sandford, Miho Shigenaka, Rhonda Stroud, Hiroki Suga, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Maximilien Verdier‐Paoletti, Daisuke Wakabayashi, Shohei Yamashita, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Hisayoshi Yurimoto, Kanako Sakamoto, Shogo Tachibana, Sei‐Ichiro Watanabe, Yuichi Tsuda, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohitro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa
    Meteoritics & Planetary Science 2023年11月13日  
    Abstract We report a Fourier transform infrared analysis of functional groups in insoluble organic matter (IOM) extracted from a series of 100–500 μm Ryugu grains collected during the two touchdowns of February 22 and July 11, 2019. IOM extracted from most of the samples is very similar to IOM in primitive CI, CM, and CR chondrites, and shows that the extent of thermal metamorphism in Ryugu regolith was, at best, very limited. One sample displays chemical signatures consistent with a very mild heating, likely due to asteroidal collision impacts. We also report a lower carbonyl abundance in Ryugu IOM samples compared to primitive chondrites, which could reflect the accretion of a less oxygenated precursor by Ryugu. The possible effects of hydrothermal alteration and terrestrial weathering are also discussed. Last, no firm conclusions could be drawn on the origin of the soluble outlier phases, observed along with IOM in this study and in the preliminary analysis of Ryugu samples. However, it is clear that the HF/HCl residues presented in this publication are a mix between IOM and the nitrogen‐rich outlier phase.
  • Tetsuya Yokoyama, Meenakshi Wadhwa, Tsuyoshi Iizuka, Vinai Rai, Ikshu Gautam, Yuki Hibiya, Yuki Masuda, Makiko K. Haba, Ryota Fukai, Rebekah Hines, Nicole Phelan, Yoshinari Abe, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Trevor Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Koki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Kazuhide Nagashima, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Science Advances 9(45) 2023年11月10日  
    Studies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform. This variation in Cr isotope ratios is most likely due to physicochemical fractionation between 54 Cr-rich presolar nanoparticles and Cr-bearing secondary minerals at the millimeter-scale in the bulk samples, likely due to extensive aqueous alteration in their parent bodies that occurred after Solar System birth. In contrast, Ti isotopes were marginally affected by this process. Our results show that isotopic heterogeneities in asteroids are not all nebular or accretionary in nature but can also reflect element redistribution by water.
  • Philippe Schmitt-Kopplin, Norbert Hertkorn, Mourad Harir, Franco Moritz, Marianna Lucio, Lydie Bonal, Eric Quirico, Yoshinori Takano, Jason P. Dworkin, Hiroshi Naraoka, Shogo Tachibana, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hisayoshi Yurimoto, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Tatsuaki Okada, Sei-ichiro Watanabe, Yuichi Tsuda, Kenji Hamase, Aogu Furusho, Minako Hashiguchi, Kazuhiko Fukushima, Dan Aoki, José C. Aponte, Eric T. Parker, Daniel P. Glavin, Hannah L. McLain, Jamie E. Elsila, Heather V. Graham, John M. Eiler, Alexander Ruf, Francois-Regis Orthous-Daunay, Junko Isa, Véronique Vuitton, Roland Thissen, Nanako O. Ogawa, Saburo Sakai, Toshihiro Yoshimura, Toshiki Koga, Haruna Sugahara, Naohiko Ohkouchi, Hajime Mita, Yoshihiro Furukawa, Yasuhiro Oba
    Nature Communications 14(1) 2023年10月16日  
    Abstract The sample from the near-Earth carbonaceous asteroid (162173) Ryugu is analyzed in the context of carbonaceous meteorites soluble organic matter. The analysis of soluble molecules of samples collected by the Hayabusa2 spacecraft shines light on an extremely high molecular diversity on the C-type asteroid. Sequential solvent extracts of increasing polarity of Ryugu samples are analyzed using mass spectrometry with complementary ionization methods and structural information confirmed by nuclear magnetic resonance spectroscopy. Here we show a continuum in the molecular size and polarity, and no organomagnesium molecules are detected, reflecting a low temperature and water-rich environment on the parent body approving earlier mineralogical and chemical data. High abundance of sulfidic and nitrogen rich compounds as well as high abundance of ammonium ions confirm the water processing. Polycyclic aromatic hydrocarbons are also detected in a structural continuum of carbon saturations and oxidations, implying multiple origins of the observed organic complexity, thus involving generic processes such as earlier carbonization and serpentinization with successive low temperature aqueous alteration.
  • Yoko Kebukawa, Eric Quirico, Emmanuel Dartois, Hikaru Yabuta, Laure Bejach, Lydie Bonal, Alexandre Dazzi, Ariane Deniset‐Besseau, Jean Duprat, Cecile Engrand, Jérémie MATHURIN, Jens Barosch, George Cody, Bradley De Gregorio, Minako Hashiguchi, Kanami Kamide, David Kilcoyne, Mutsumi Komatsu, Zita Martins, Gilles Montagnac, Smail Mostefaoui, Larry Nittler, Takuji Ohigashi, Taiga Okumura, Laurent Remusat, Scott Sandford, Miho Shigenaka, Rhonda Stroud, Hiroki Suga, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Maximilien Verdier‐Paoletti, Daisuke Wakabayashi, Shohei Yamashita, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa
    Meteoritics & Planetary Science 2023年8月19日  
    <jats:title>Abstract</jats:title><jats:p>The infrared spectral characteristics of organic‐rich acid residues prepared from Ryugu samples returned by the JAXA Hayabusa2 mission generally match those from unheated carbonaceous chondrite meteorites, but the residues from Ryugu are richer in methyl and methylene functional groups and have higher CH<jats:sub>2</jats:sub>/CH<jats:sub>3</jats:sub> ratios. Moreover, two distinct outlier carbonaceous phases are found; one with spectral characteristics of N‐H functional groups, likely amides, and a second phase containing less nitrogen. Such infrared characteristics of Ryugu organic matter might indicate the pristine nature of the freshly collected samples and reflect the near‐surface chemistry in the parent asteroid.</jats:p>
  • Yuki Kimura, Takeharu Kato, Toshiaki Tanigaki, Tetsuya Akashi, Hiroto Kasai, Satoshi Anada, Ryuji Yoshida, Kazuo Yamamoto, Tomoki Nakamura, Masahiko Sato, Kana Amano, Mizuha Kikuiri, Tomoyo Morita, Eiichi Kagawa, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Sei-ichiro Watanabe, Yuichi Tsuda, Shogo Tachibana
    SCIENTIFIC REPORTS 13(1) 2023年8月  
    In the samples collected from the asteroid Ryugu, magnetite displays natural remanent magnetization due to nebular magnetic field, whereas contemporaneously grown iron sulfide does not display stable remanent magnetization. To clarify this counterintuitive feature, we observed their nanoscale magnetic domain structures using electron holography and found that framboidal magnetites have an external magnetic field of 300 A m(-1), similar to the bulk value, and its magnetic stability was enhanced by interactions with neighboring magnetites, permitting a disk magnetic field to be recorded. Micrometer-sized pyrrhotite showed a multidomain magnetic structure that was unable to retain natural remanent magnetization over a long time due to short relaxation time of magnetic-domain-wall movement, whereas submicron-sized sulfides formed a nonmagnetic phase. These results show that both magnetite and sulfide could have formed simultaneously during the aqueous alteration in the parent body of the asteroid Ryugu.
  • Haolan Tang, Edward D. Young, Lauren Tafla, Andreas Pack, Tommaso Di Rocco, Yoshinari Abe, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Kazuhide Nagashima, Izumi Nakai, Ann Nguyen, Larry Nittler, Morihiko Onose, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    The Planetary Science Journal 4(8) 144-144 2023年8月1日  
    Abstract We present oxygen isotopic analyses of fragments of the near-Earth Cb-type asteroid Ryugu returned by the Hayabusa2 spacecraft that reinforce the close correspondence between Ryugu and CI chondrites. Small differences between Ryugu samples and CI chondrites in ${ { \rm{\Delta } } }^{ { \prime} 17}{\rm{O } }$ can be explained at least in part by contamination of the latter by terrestrial water. The discovery that a randomly sampled C-complex asteroid is composed of CI-chondrite-like rock, combined with thermal models for formation prior to significant decay of the short-lived radioisotope 26Al, suggests that if lithified at the time of alteration, the parent body was small (≪50 km radius). If the parent planetesimal was large (&gt;50 km in radius), it was likely composed of high-permeability, poorly lithified sediment rather than consolidated rock.
  • Ann. N. Nguyen, Prajkta Mane, Lindsay P. Keller, Laurette Piani, Yoshinari Abe, Jérôme Aléon, Conel M. O'D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Kazuhide Nagashima, David Nesvorný, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Science Advances 9(28) 2023年7月14日  
    Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration. The 5 to 10 times higher abundances of presolar SiC (~235 ppm), N-rich organic matter, organics with N isotopic anomalies (1.2%), and organics with C isotopic anomalies (0.2%) in the primitive clasts compared to bulk Ryugu suggest that the clasts formed in a unique part of the protoplanetary disk enriched in presolar materials. These clasts likely represent previously unsampled outer solar system material that accreted onto Ryugu after aqueous alteration ceased, consistent with Ryugu’s rubble pile origin.
  • Wataru Fujiya, Noriyuki Kawasaki, Kazuhide Nagashima, Naoya Sakamoto, Conel M. O’D. Alexander, Noriko T. Kita, Kouki Kitajima, Yoshinari Abe, Jérôme Aléon, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Nature Geoscience 16(8) 675-682 2023年7月10日  
  • Alexander Meshik, Olga Pravdivtseva, Ryuji Okazaki, Kasumi Yogata, Toru Yada, Fumio Kitajima, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Sakai, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Seiichiro Watanabe, Yuichi Tsuda, Hayabusa2 Initial Analysis Volatile Team
    Journal of Analytical Atomic Spectrometry 2023年7月  
    Mass spectrometry of noble gas isotopes from the asteroid materials delivered by robotic space missions requires high sensitivity, high ion transmission, low detection limit, and other characteristics not readily available in commercial instruments.
  • Shota Kikuchi, Yuya Mimasu, Yuto Takei, Takanao Saiki, Daniel J. Scheeres, Masatoshi Hirabayashi, Koji Wada, Makoto Yoshikawa, Sei-ichiro Watanabe, Satoshi Tanaka, Yuichi Tsuda
    Acta Astronautica 2023年6月  
  • Keisuke Onodera, Yuta Ino, Satoshi Tanaka, Taichi Kawamura, Rei Kanemaru, Takuya Ishizaki, Ryota Fukai, Takeshi Tsuji, Tomoki Nakamura, Daisuke Nakashima, Masayuki Uesugi, Shogo Tachibana, Seiji Sugita, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoru Nakazawa, Fuyuto Terui, Sei-ichiro Watanabe, Yuichi Tsuda
    2023年5月25日  
    <p id="p1">The elastic property of asteroids is one of the paramount parameters forunderstanding their physical nature. For example, the rigidity enablesus to discuss the asteroid’s shape and surface features such as cratersand boulders, leading to a better understanding of geomorphological andgeological features on small celestial bodies. The sound velocity allowsus to construct an equation of state that is the most fundamental stepto simulate the formation of small bodies numerically. Moreover, seismicwave velocities and attenuation factors are useful to account forresurfacing caused by impact-induced seismic shaking. The elasticproperty of asteroids thus plays an important role in elucidating theasteroid’s evolution and current geological processes. The Hayabusa2spacecraft brought back the rock samples from C-type asteroid (162173)Ryugu in December 2020. As a part of the initial analysis of returnedsamples, we measured the seismic wave velocity of the Ryugu samplesusing the pulse transmission method. We found that P- and S-wavevelocities of the Ryugu samples were about 2.1 km/s and 1.2 km/s,respectively. We also estimated Young’s modulus of 6.0 – 8.0 GPa. Acomparison of the derived parameters with those of carbonaceouschondrites showed that the Ryugu samples have a similar elastic propertyto the Tagish Lake meteorite, which may have come from a D-typeasteroid. Both Ryugu and Tagish Lake show a high degree of aqueousalteration and few high-temperature components such as chondrules,indicating that they formed in the outer region of the solar system.</p>
  • Naotaka Tomioka, Akira Yamaguchi, Motoo Ito, Masayuki Uesugi, Naoya Imae, Naoki Shirai, Takuji Ohigashi, Makoto Kimura, Ming-Chang Liu, Richard C. Greenwood, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Kaori Hirahara, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Keishi Okazaki, Kosuke Kurosawa, Takaaki Noguchi, Akira Miyake, Masaaki Miyahara, Yusuke Seto, Toru Matsumoto, Yohei Igami, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Sei-ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy 7(6) 669-677 2023年4月20日  
    Abstract Micrometeorites, a possible major source of Earth’s water, are thought to form from explosive dispersal of hydrated chondritic materials during impact events on their parental asteroids. However, this provenance and formation mechanism have yet to be directly confirmed using asteroid returned samples. Here, we report evidence of mild shock metamorphism in the surface particles of asteroid Ryugu based on electron microscopy. All particles are dominated by phyllosilicates but lack dehydration textures, which are indicative of shock-heating temperatures below ~500 °C. Microfault-like textures associated with extensively shock-deformed framboidal magnetites and a high-pressure polymorph of Fe–Cr–sulfide have been identified. These findings indicate that the average peak pressure was ~2 GPa. The vast majority of ejecta formed during impact on Ryugu-like asteroids would be hydrated materials, larger than a millimetre, originating far from the impact point. These characteristics are inconsistent with current micrometeorite production models, and consequently, a new formation mechanism is required.
  • Laurette Piani, Kazuhide Nagashima, Noriyuki Kawasaki, Naoya Sakamoto, Ken-ichi Bajo, Yoshinari Abe, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Liping Qin, Sara S. Russell, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    The Astrophysical Journal Letters 946(2) L43-L43 2023年4月1日  査読有り
    Abstract Rock fragments of the Cb-type asteroid Ryugu returned to Earth by the JAXA Hayabusa2 mission share mineralogical, chemical, and isotopic properties with the Ivuna-type (CI) carbonaceous chondrites. Similar to CI chondrites, these fragments underwent extensive aqueous alteration and consist predominantly of hydrous minerals likely formed in the presence of liquid water on the Ryugu parent asteroid. Here we present an in situ analytical survey performed by secondary ion mass spectrometry from which we have estimated the D/H ratio of Ryugu’s hydrous minerals, D/HRyugu, to be [165 ± 19] × 10−6, which corresponds to δDRyugu = +59 ± 121‰ (2σ). The hydrous mineral D/HRyugu’s values for the two sampling sites on Ryugu are similar; they are also similar to the estimated D/H ratio of hydrous minerals in the CI chondrites Orgueil and Alais. This result reinforces a link between Ryugu and CI chondrites and an inference that Ryugu’s samples, which avoided terrestrial contamination, are our best proxy to estimate the composition of water at the origin of hydrous minerals in CI-like material. Based on this data and recent literature studies, the contribution of CI chondrites to the hydrogen of Earth’s surficial reservoirs is evaluated to be ∼3%. We conclude that the water responsible for the alteration of Ryugu’s rocks was derived from water ice precursors inherited from the interstellar medium; the ice partially re-equilibrated its hydrogen with the nebular H2 before being accreted on the Ryugu’s parent asteroid.
  • Elena Dobrică, Hope A. Ishii, John P. Bradley, Kenta Ohtaki, Adrian J. Brearley, Takaaki Noguchi, Toru Matsumoto, Akira Miyake, Yohei Igami, Mitsutaka Haruta, Hikaru Saito, Satoshi Hata, Yusuke Seto, Masaaki Miyahara, Naotaka Tomioka, Hugues Leroux, Corentin Le Guillou, Damien Jacob, Francisco de la Peña, Sylvain Laforet, Maya Marinova, Falko Langenhorst, Dennis Harries, Pierre Beck, Thi H.V. Phan, Rolando Rebois, Neyda M. Abreu, Jennifer Gray, Thomas Zega, Pierre M. Zanetta, Michelle S. Thompson, Rhonda Stroud, Kate Burgess, Brittany A. Cymes, John C. Bridges, Leon Hicks, Martin R. Lee, Luke Daly, Phil A. Bland, Michael E. Zolensky, David R. Frank, James Martinez, Akira Tsuchiyama, Masahiro Yasutake, Junya Matsuno, Shota Okumura, Itaru Mitsukawa, Kentaro Uesugi, Masayuki Uesugi, Akihisa Takeuchi, Mingqi Sun, Satomi Enju, Aki Takigawa, Tatsuhiro Michikami, Tomoki Nakamura, Megumi Matsumoto, Yusuke Nakauchi, Hisayoshi Yurimoto, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei ichiro Watanabe, Yuichi Tsuda
    Geochimica et Cosmochimica Acta 346 65-75 2023年4月  
    We have investigated several particles collected during each of two touchdowns of the Hayabusa2 spacecraft at the surface of the C-type asteroid 162173 Ryugu using various electron microscope techniques. Our detailed transmission electron microscopy study shows the presence of magnetite with various morphologies coexisting in close proximity. This is characteristic of CI chondrite-like materials and consistent with the mineral assemblages and compositions in the Ryugu parent body. We describe the microstructural characteristics of magnetite with different morphologies, which could have resulted from the chemical conditions (growth vs. diffusion rate) during their formation. Furthermore, we describe the presence of magnetites with a spherulitic structure composed of individual radiating fibers that are characterized by pervasive, homogeneously distributed euhedral to subhedral pores that have not been described in previous chondrite studies. This particular spherulitic structure is consistent with crystallization under nonequilibrium conditions. Additionally, the presence of a high density of defects within the magnetite fibers, the high surface/volume ratio of this morphology, and the presence of amorphous materials in several pores and at the edges of the acicular fibers further support their formation under nonequilibrium conditions. We suggest that the growth processes that lead to this structure result from the solution reaching a supersaturated state, resulting in an adjustment to a lower free energy condition via nucleation and rapid growth.
  • Eric T. Parker, Hannah L. McLain, Daniel P. Glavin, Jason P. Dworkin, Jamie E. Elsila, José C. Aponte, Hiroshi Naraoka, Yoshinori Takano, Shogo Tachibana, Hikaru Yabuta, Hisayoshi Yurimoto, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Satoru Nakazawa, Yuichi Tsuda, Fuyuto Terui, Takaaki Noguchi, Ryuji Okazaki, Sei-ichiro Watanabe, Tomoki Nakamura
    Geochimica et Cosmochimica Acta 347 42-57 2023年4月  
  • Yasuhiro Oba, Toshiki Koga, Yoshinori Takano, Nanako O Ogawa, Naohiko Ohkouchi, Kazunori Sasaki, Hajime Sato, Daniel P Glavin, Jason P Dworkin, Hiroshi Naraoka, Shogo Tachibana, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-Ichiro Watanabe, Yuichi Tsuda
    Nature communications 14(1) 1292-1292 2023年3月21日  
    The pristine sample from the near-Earth carbonaceous asteroid (162173) Ryugu collected by the Hayabusa2 spacecraft enabled us to analyze the pristine extraterrestrial material without uncontrolled exposure to the Earth's atmosphere and biosphere. The initial analysis team for the soluble organic matter reported the detection of wide variety of organic molecules including racemic amino acids in the Ryugu samples. Here we report the detection of uracil, one of the four nucleobases in ribonucleic acid, in aqueous extracts from Ryugu samples. In addition, nicotinic acid (niacin, a B3 vitamer), its derivatives, and imidazoles were detected in search for nitrogen heterocyclic molecules. The observed difference in the concentration of uracil between A0106 and C0107 may be related to the possible differences in the degree of alteration induced by energetic particles such as ultraviolet photons and cosmic rays. The present study strongly suggests that such molecules of prebiotic interest commonly formed in carbonaceous asteroids including Ryugu and were delivered to the early Earth.
  • Christian Potiszil, Tsutomu Ota, Masahiro Yamanaka, Chie Sakaguchi, Katsura Kobayashi, Ryoji Tanaka, Tak Kunihiro, Hiroshi Kitagawa, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Tomohiro Usui, Sei-ichiro Watanabe, Toru Yada, Kasumi Yogata, Makoto Yoshikawa, Eizo Nakamura
    Nature Communications 14(1) 2023年3月17日  
    Abstract All life on Earth contains amino acids and carbonaceous chondrite meteorites have been suggested as their source at the origin of life on Earth. While many meteoritic amino acids are considered indigenous, deciphering the extent of terrestrial contamination remains an issue. The Ryugu asteroid fragments (JAXA Hayabusa2 mission), represent the most uncontaminated primitive extraterrestrial material available. Here, the concentrations of amino acids from two particles from different touchdown sites (TD1 and TD2) are reported. The concentrations show that N,N-dimethylglycine (DMG) is the most abundant amino acid in the TD1 particle, but below detection limit in the other. The TD1 particle mineral components indicate it experienced more aqueous alteration. Furthermore, the relationships between the amino acids and the geochemistry suggest that DMG formed on the Ryugu progenitor body during aqueous alteration. The findings highlight the importance of aqueous chemistry for defining the ultimate concentrations of amino acids in primitive extraterrestrial samples.
  • M. W. Broadley, D. J. Byrne, E. Füri, L. Zimmermann, B. Marty, R. Okazaki, T. Yada, F. Kitajima, S. Tachibana, K. Yogata, K. Sakamoto, H. Yurimoto, T. Nakamura, T. Noguchi, H. Naraoka, H. Yabuta, S. Watanabe, Y. Tsuda, M. Nishimura, A. Nakato, A. Miyazaki, M. Abe, T. Okada, T. Usui, M. Yoshikawa, T. Saiki, S. Tanaka, F. Terui, S. Nakazawa, H. Busemann, K. Hashizume, J. D. Gilmour, A. Meshik, M. E.I. Riebe, D. Krietsch, C. Maden, A. Ishida, P. Clay, S. A. Crowther, L. Fawcett, T. Lawton, O. Pravdivtseva, Y. N. Miura, J. Park, K. Bajo, Y. Takano, K. Yamada, S. Kawagucci, Y. Matsui, M. Yamamoto, K. Righter, S. Sakai, N. Iwata, N. Shirai, S. Sekimoto, M. Inagaki, M. Ebihara, R. Yokochi, K. Nishiizumi, K. Nagao, J. I. Lee, A. Kano, M. W. Caffee, R. Uemura
    Geochimica et Cosmochimica Acta 345 62-74 2023年3月15日  
    Carbonaceous chondrites are considered to have originated from C-type asteroids and represent some of the most primitive material in our solar system. Furthermore, since carbonaceous chondrites can contain significant quantities of volatile elements, they may have played a crucial role in supplying volatiles and organic material to Earth and other inner solar system bodies. However, a major challenge of unravelling the volatile composition of chondritic meteorites is distinguishing between which features were inherited from the parent body, and what may be a secondary feature attributable to terrestrial weathering. In December 2020, the Hayabusa2 mission of the Japan Aerospace Exploration Agency (JAXA) successfully returned surface material from the C-type asteroid (162173) Ryugu to Earth. This material has now been classified as closely resembling CI-type chondrites, which are the most chemically pristine meteorites. The analysis of material from the surface of Ryugu therefore provides a unique opportunity to analyse the volatile composition of material that originated from a CI-type asteroid without the complications arising from terrestrial contamination. Given their highly volatile nature, the noble gas and nitrogen inventories of chondrites are highly sensitive to different alteration processes on the asteroid parent body, and to terrestrial contamination. Here, we investigate the nitrogen and noble gas signature of two pelletized grains collected from the first and second touchdown sites (Okazaki et al., 2022a), to provide an insight into the formation and alteration history of Ryugu. The concentration of trapped noble gas in the Ryugu samples is greater than the average composition of previously measured CI chondrites and are primarily derived from phase Q, although a significant contribution of presolar nanodiamond Xe-HL is noted. The large noble gas concentrations coupled with a significant contribution of presolar nanodiamonds suggests that the Ryugu samples may represent some of the most primitive unprocessed material from the early solar system. In contrast to the noble gases, the abundance of nitrogen and δ15N composition of the two Ryugu pellets are lower than the average CI chondrite value. We attribute the lower nitrogen abundances and δ15N measured in this study to the preferential loss of a 15N-rich phase from our samples during aqueous alteration on the parent planetesimal. The analyses of other grains returned from Ryugu have shown large variations in nitrogen concentrations and δ15N indicating that alteration fluids heterogeneously interacted with material now present on the surface of Ryugu. Finally, the ratio of trapped noble gases to nitrogen is higher than CI chondrites, and is closer to refractory phase Q and nanodiamonds. This indicates that Ryugu experienced aqueous alteration that led to the significant and variable loss of nitrogen, likely from soluble organic matter, without modification of the noble gas budget, which is primarily hosted in insoluble organic matter and presolar diamonds and is therefore more resistant to aqueous alteration.
  • Geem, Jooyeon, Ishiguro, Masateru, Granvik, Mikael, Naito, Hiroyuki, Akitaya, Hiroshi, Sekiguchi, Tomohiko, Hasegawa, Sunao, Kuroda, Daisuke, Oono, Tatsuharu, Bach, Yoonsoo P, Jin, Sunho, Imazawa, Ryo, Kawabata, Koji S, Takagi, Seiko, Yoshikawa, Makoto, Djupvik, Anlaug A, Thiim Gadeberg, Julie, Pursimo, Tapio, Durfeldt Pedros, Oliver, Sinkbaek Thomsen, Jeppe, Gray, Zuri
    Monthly Notices of the Royal Astronomical Society 2023年3月  査読有り
  • Emmanuel Dartois, Yoko Kebukawa, Hikaru Yabuta, Jérémie Mathurin, Cécile Engrand, Jean Duprat, Laure Bejach, Alexandre Dazzi, Ariane Deniset-Besseau, Lydie Bonal, Eric Quirico, Christophe Sandt, Ferenc Borondics, Jens Barosch, George D. Cody, Brad T. De Gregorio, Minako Hashiguchi, David A.L. Kilcoyne, Mutsumi Komatsu, Zita Martins, Megumi Matsumoto, Gilles Montagnac, Smail Mostefaoui, Larry R. Nittler, Takuji Ohigashi, Taiga Okumura, Laurent Remusat, Scott Sandford, Miho Shigenaka, Rhonda Stroud, Hiroki Suga, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Maximilien Verdier-Paoletti, Shohei Yamashita, Tomoki Nakamura, Tomoyo Morita, Mizuha Kikuiri, Kana Amano, Eiichi Kagawa, Takaaki Noguchi, Hiroshi Naraoka, Ryuji Okazaki, Kanako Sakamoto, Hisayoshi Yurimoto, Masanao Abe, Kanami Kamide, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Shogo Tachibana, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Tomohiro Usui, Sei Ichiro Watanabe, Toru Yada, Kasumi Yogata, Makoto Yoshikawa
    Astronomy and Astrophysics 671 2023年3月1日  査読有り
    Context. The current period is conducive to exploring our Solar System's origins with recent and future space sample return missions, which provide invaluable information from known Solar System asteroids and comets The Hayabusa2 mission of the Japan Aerospace Exploration Agency (JAXA) recently brought back samples from the surface of the Ryugu carbonaceous asteroid. Aims. We aim to identify the different forms of chemical composition of organic matter and minerals that constitute these Solar System primitive objects, to shed light on the Solar System's origins. Methods. In this work, we recorded infrared (IR) hyper-spectral maps of whole-rock Ryugu asteroid samples at the highest achievable spatial resolution with a synchrotron in the mid-IR (MIR). Additional global far-IR (FIR) spectra of each sample were also acquired. Results. The hyper-spectral maps reveal the variability of the functional groups at small scales and the intimate association of phyl-losilicates with the aliphatic components of the organic matter present in Ryugu. The relative proportion of column densities of the identified IR functional groups (aliphatics, hydroxyl + interlayer and/or physisorbed water, carbonyl, carbonates, and silicates) giving access to the composition of the Ryugu samples is estimated from these IR hyper-spectral maps. Phyllosilicate spectra reveal the presence of mixtures of serpentine and saponite. We do not detect anhydrous silicates in the samples analysed, at the scales probed. The carbonates are dominated by dolomite. Aliphatics organics are distributed over the whole samples at the micron scale probed with the synchrotron, and intimately mixed with the phyllosilicates. The aromatic C=C contribution could not be safely deconvolved from OH in most spectra, due to the ubiquitous presence of hydrated minerals. The peak intensity ratios of the organics methylene to methyl (CH2/CH3) of the Ryugu samples vary between about 1.5 and 2.5, and are compared to the ratios in chondrites from types 1 to 3. Overall, the mineralogical and organic characteristics of the Ryugu samples show similarities with those of CI chondrites, although with a noticeably higher CH2/CH3 in Ryugu than generally measured in C1 chondrites collected on Earth, and possibly a higher carbonate content.
  • Tetsuya Yokoyama, Kazuhide Nagashima, Izumi Nakai, Edward D Young, Yoshinari Abe, Jérôme Aléon, Conel M O'D Alexander, Sachiko Amari, Yuri Amelin, Ken-Ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Noriyuki Kawasaki, Noriko T Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N Krot, Ming-Chang Liu, Yuki Masuda, Kevin D McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Hiroharu Yui, Ai-Cheng Zhang, Harold C Connolly Jr, Dante S Lauretta, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-Ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Yuichi Tsuda, Ryudo Tsukizaki, Koji Wada, Sei-Ichiro Watanabe, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Hiromichi Soejima, Ayako Suzuki, Toru Yada, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Shogo Tachibana, Hisayoshi Yurimoto
    Science (New York, N.Y.) 379(6634) eabn7850 2023年2月24日  
    Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples. The samples are mainly composed of materials similar to those of carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37° ± 10°C, about [Formula: see text] million (statistical) or [Formula: see text] million (systematic) years after the formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles that of the Sun's photosphere than other natural samples do.
  • Ryuji Okazaki, Bernard Marty, Henner Busemann, Ko Hashizume, Jamie D Gilmour, Alex Meshik, Toru Yada, Fumio Kitajima, Michael W Broadley, David Byrne, Evelyn Füri, My E I Riebe, Daniela Krietsch, Colin Maden, Akizumi Ishida, Patricia Clay, Sarah A Crowther, Lydia Fawcett, Thomas Lawton, Olga Pravdivtseva, Yayoi N Miura, Jisun Park, Ken-Ichi Bajo, Yoshinori Takano, Keita Yamada, Shinsuke Kawagucci, Yohei Matsui, Mizuki Yamamoto, Kevin Righter, Saburo Sakai, Naoyoshi Iwata, Naoki Shirai, Shun Sekimoto, Makoto Inagaki, Mitsuru Ebihara, Reika Yokochi, Kunihiko Nishiizumi, Keisuke Nagao, Jong Ik Lee, Akihiro Kano, Marc W Caffee, Ryu Uemura, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Hikaru Yabuta, Hisayoshi Yurimoto, Shogo Tachibana, Hirotaka Sawada, Kanako Sakamoto, Masanao Abe, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-Ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Hiromichi Soejima, Ayako Iwamae, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Ryota Fukai, Tomohiro Usui, Harold C Connolly Jr, Dante Lauretta, Sei-Ichiro Watanabe, Yuichi Tsuda
    Science (New York, N.Y.) 379(6634) eabo0431 2023年2月24日  
    The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.
  • Hikaru Yabuta, George D Cody, Cécile Engrand, Yoko Kebukawa, Bradley De Gregorio, Lydie Bonal, Laurent Remusat, Rhonda Stroud, Eric Quirico, Larry Nittler, Minako Hashiguchi, Mutsumi Komatsu, Taiga Okumura, Jérémie Mathurin, Emmanuel Dartois, Jean Duprat, Yoshio Takahashi, Yasuo Takeichi, David Kilcoyne, Shohei Yamashita, Alexandre Dazzi, Ariane Deniset-Besseau, Scott Sandford, Zita Martins, Yusuke Tamenori, Takuji Ohigashi, Hiroki Suga, Daisuke Wakabayashi, Maximilien Verdier-Paoletti, Smail Mostefaoui, Gilles Montagnac, Jens Barosch, Kanami Kamide, Miho Shigenaka, Laure Bejach, Megumi Matsumoto, Yuma Enokido, Takaaki Noguchi, Hisayoshi Yurimoto, Tomoki Nakamura, Ryuji Okazaki, Hiroshi Naraoka, Kanako Sakamoto, Harold C Connolly Jr, Dante S Lauretta, Masanao Abe, Tatsuaki Okada, Toru Yada, Masahiro Nishimura, Kasumi Yogata, Aiko Nakato, Miwa Yoshitake, Ayako Iwamae, Shizuho Furuya, Kentaro Hatakeda, Akiko Miyazaki, Hiromichi Soejima, Yuya Hitomi, Kazuya Kumagai, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Seiji Sugita, Kohei Kitazato, Naru Hirata, Rie Honda, Tomokatsu Morota, Eri Tatsumi, Naoya Sakatani, Noriyuki Namiki, Koji Matsumoto, Rina Noguchi, Koji Wada, Hiroki Senshu, Kazunori Ogawa, Yasuhiro Yokota, Yoshiaki Ishihara, Yuri Shimaki, Manabu Yamada, Chikatoshi Honda, Tatsuhiro Michikami, Moe Matsuoka, Naoyuki Hirata, Masahiko Arakawa, Chisato Okamoto, Masateru Ishiguro, Ralf Jaumann, Jean-Pierre Bibring, Matthias Grott, Stefan Schröder, Katharina Otto, Cedric Pilorget, Nicole Schmitz, Jens Biele, Tra-Mi Ho, Aurélie Moussi-Soffys, Akira Miura, Hirotomo Noda, Tetsuya Yamada, Keisuke Yoshihara, Kosuke Kawahara, Hitoshi Ikeda, Yukio Yamamoto, Kei Shirai, Shota Kikuchi, Naoko Ogawa, Hiroshi Takeuchi, Go Ono, Yuya Mimasu, Kent Yoshikawa, Yuto Takei, Atsushi Fujii, Yu-Ichi Iijima, Satoru Nakazawa, Satoshi Hosoda, Takahiro Iwata, Masahiko Hayakawa, Hirotaka Sawada, Hajime Yano, Ryudo Tsukizaki, Masanobu Ozaki, Fuyuto Terui, Satoshi Tanaka, Masaki Fujimoto, Makoto Yoshikawa, Takanao Saiki, Shogo Tachibana, Sei-Ichiro Watanabe, Yuichi Tsuda
    Science (New York, N.Y.) 379(6634) eabn9057 2023年2月24日  
    Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.
  • Hiroshi Naraoka, Yoshinori Takano, Jason P. Dworkin, Yasuhiro Oba, Kenji Hamase, Aogu Furusho, Nanako O. Ogawa, Minako Hashiguchi, Kazuhiko Fukushima, Dan Aoki, Philippe Schmitt-Kopplin, José C. Aponte, Eric T. Parker, Daniel P. Glavin, Hannah L. McLain, Jamie E. Elsila, Heather V. Graham, John M. Eiler, Francois-Regis Orthous-Daunay, Cédric Wolters, Junko Isa, Véronique Vuitton, Roland Thissen, Saburo Sakai, Toshihiro Yoshimura, Toshiki Koga, Naohiko Ohkouchi, Yoshito Chikaraishi, Haruna Sugahara, Hajime Mita, Yoshihiro Furukawa, Norbert Hertkorn, Alexander Ruf, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Kanako Sakamoto, Shogo Tachibana, Harold C. Connolly, Dante S. Lauretta, Masanao Abe, Toru Yada, Masahiro Nishimura, Kasumi Yogata, Aiko Nakato, Miwa Yoshitake, Ayako Suzuki, Akiko Miyazaki, Shizuho Furuya, Kentaro Hatakeda, Hiromichi Soejima, Yuya Hitomi, Kazuya Kumagai, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Kohei Kitazato, Seiji Sugita, Noriyuki Namiki, Masahiko Arakawa, Hitoshi Ikeda, Masateru Ishiguro, Naru Hirata, Koji Wada, Yoshiaki Ishihara, Rina Noguchi, Tomokatsu Morota, Naoya Sakatani, Koji Matsumoto, Hiroki Senshu, Rie Honda, Eri Tatsumi, Yasuhiro Yokota, Chikatoshi Honda, Tatsuhiro Michikami, Moe Matsuoka, Akira Miura, Hirotomo Noda, Tetsuya Yamada, Keisuke Yoshihara, Kosuke Kawahara, Masanobu Ozaki, Yu-ichi Iijima, Hajime Yano, Masahiko Hayakawa, Takahiro Iwata, Ryudo Tsukizaki, Hirotaka Sawada, Satoshi Hosoda, Kazunori Ogawa, Chisato Okamoto, Naoyuki Hirata, Kei Shirai, Yuri Shimaki, Manabu Yamada, Tatsuaki Okada, Yukio Yamamoto, Hiroshi Takeuchi, Atsushi Fujii, Yuto Takei, Kento Yoshikawa, Yuya Mimasu, Go Ono, Naoko Ogawa, Shota Kikuchi, Satoru Nakazawa, Fuyuto Terui, Satoshi Tanaka, Takanao Saiki, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Science 379(6634) 2023年2月24日  
    The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu’s parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.

MISC

 499
  • 岡田達明, 岡田達明, 田中智, 坂谷尚哉, 嶌生有理, 石崎拓也, 吉川真, 竹内央, 山本幸生, 荒井武彦, 千秋博紀, 出村裕英, 関口朋彦, 神山徹, 金丸仁明
    日本地球惑星科学連合大会予稿集(Web) 2023 2023年  
  • 田中智, 三桝裕也, 神山徹, 坂谷尚哉, 北里宏平, 鎌田俊一, 平林正稔, 中澤暁, 吉川真, 津田雄一
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • 吉川真, 田中智, 平林正稔, 三桝裕也, 佐伯孝尚, 中澤暁, 津田雄一
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • 奥村真一郎, 柳沢俊史, 大澤亮, 酒向重行, 紅山仁, 高橋英則, 吉田二美, 吉川真, 浦川聖太郎, 阿部新助
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • Jens Barosch, Larry R. Nittler, Jianhua Wang, Conel M. O'D. Alexander, Bradley T. De Gregorio, Cécile Engrand, Yoko Kebukawa, Kazuhide Nagashima, Rhonda M. Stroud, Hikaru Yabuta, Yoshinari Abe, Jérôme Aléon, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Laure Bejach, Martin Bizzarro, Lydie Bonal, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, George D. Cody, Emmanuel Dartois, Nicolas Dauphas, Andrew M. Davis, Alexandre Dazzi, Ariane Deniset-Besseau, Tommaso Di Rocco, Jean Duprat, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Minako Hashiguchi, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Kanami Kamide, Noriyuki Kawasaki, A. L. David Kilcoyne, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Mutsumi Komatsu, Alexander N. Krot, Ming-Chang Liu, Zita Martins, Yuki Masuda, Jérémie Mathurin, Kevin D. McKeegan, Gilles Montagnac, Mayu Morita, Smail Mostefaoui, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Ann N. Nguyen, Takuji Ohigashi, Taiga Okumura, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Eric Quirico, Laurent Remusat, Sara S. Russell, Naoya Sakamoto, Scott A. Sandford, Maria Schönbächler, Miho Shigenaka, Hiroki Suga, Lauren Tafla, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Maximilien Verdier-Paoletti, Sohei Wada, Meenakshi Wadhwa, Daisuke Wakabayashi, Richard J. Walker, Katsuyuki Yamashita, Shohei Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Toru Yada, Kasumi Yogata, Makoto Yoshikawa, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Shogo Tachibana, Hisayoshi Yurimoto
    ASTROPHYSICAL JOURNAL LETTERS 935(1) 2022年8月16日  
    We have conducted a NanoSIMS-based search for presolar material in samples recently returned from C-type asteroid Ryugu as part of JAXA's Hayabusa2 mission. We report the detection of all major presolar grain types with O- and C-anomalous isotopic compositions typically identified in carbonaceous chondrite meteorites: 1 silicate, 1 oxide, 1 O-anomalous supernova grain of ambiguous phase, 38 SiC, and 16 carbonaceous grains. At least two of the carbonaceous grains are presolar graphites, whereas several grains with moderate C isotopic anomalies are probably organics. The presolar silicate was located in a clast with a less altered lithology than the typical extensively aqueously altered Ryugu matrix. The matrix-normalized presolar grain abundances in Ryugu are 4.8$^{+4.7}_{-2.6}$ ppm for O-anomalous grains, 25$^{+6}_{-5}$ ppm for SiC grains and 11$^{+5}_{-3}$ ppm for carbonaceous grains. Ryugu is isotopically and petrologically similar to carbonaceous Ivuna-type (CI) chondrites. To compare the in situ presolar grain abundances of Ryugu with CI chondrites, we also mapped Ivuna and Orgueil samples and found a total of SiC grains and 6 carbonaceous grains. No O-anomalous grains were detected. The matrix-normalized presolar grain abundances in the CI chondrites are similar to those in Ryugu: 23 $^{+7}_{-6}$ ppm SiC and 9.0$^{+5.3}_{-4.6}$ ppm carbonaceous grains. Thus, our results provide further evidence in support of the Ryugu-CI connection. They also reveal intriguing hints of small-scale heterogeneities in the Ryugu samples, such as locally distinct degrees of alteration that allowed the preservation of delicate presolar material.

書籍等出版物

 19

講演・口頭発表等

 32

担当経験のある科目(授業)

 8

共同研究・競争的資金等の研究課題

 15

学術貢献活動

 3

社会貢献活動

 2

メディア報道

 2