研究者業績

福家 英之

フケ ヒデユキ  (Hideyuki Fuke)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 准教授
学位
博士(理学)(東京大学)

研究者番号
10392820
ORCID ID
 https://orcid.org/0000-0002-8071-3398
J-GLOBAL ID
200901069192864044
researchmap会員ID
1000315975

論文

 207
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. Kitamura, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    Astrophysical Journal Letters 829(1) L20 2016年9月20日  査読有り
    © 2016. The American Astronomical Society. All rights reserved.. We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view of ∼2 sr. The CALET gamma-ray burst monitor (CGBM) views ∼3 sr and ∼2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV-1 MeV and 40 keV-20 MeV bands respectively. We place a 90% upper limit of 2 ×10-7 erg cm-2 s-1 in the 1-100 GeV band where CAL reaches 15% of the integrated LIGO probability (∼1.1 sr). The CGBM 7σ upper limits are 1.0 ×10-6 erg cm-2 s-1 (7-500 keV) and 1.8 ×10-6 erg cm-2 s-1 (50-1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3-5 ×1049 erg s-1, which is significantly lower than typical short GRBs.
  • T. Matsumura, Y. Akiba, K. Arnold, J. Borrill, R. Chendra, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Dominjon, T. Elleflot, J. Errard, T. Fujino, H. Fuke, N. Goeckner-wald, N. Halverson, P. Harvey, M. Hasegawa, K. Hattori, M. Hattori, M. Hazumi, C. Hill, G. Hilton, W. Holzapfel, Y. Hori, J. Hubmayr, K. Ichiki, J. Inatani, M. Inoue, Y. Inoue, F. Irie, K. Irwin, H. Ishino, H. Ishitsuka, O. Jeong, K. Karatsu, S. Kashima, N. Katayama, I. Kawano, B. Keating, A. Kibayashi, Y. Kibe, Y. Kida, K. Kimura, N. Kimura, K. Kohri, E. Komatsu, C. L. Kuo, S. Kuromiya, A. Kusaka, A. Lee, E. Linder, H. Matsuhara, S. Matsuoka, S. Matsuura, S. Mima, K. Mitsuda, K. Mizukami, H. Morii, T. Morishima, M. Nagai, T. Nagasaki, R. Nagata, M. Nakajima, S. Nakamura, T. Namikawa, M. Naruse, K. Natsume, T. Nishibori, K. Nishijo, H. Nishino, T. Nitta, A. Noda, T. Noguchi, H. Ogawa, S. Oguri, I. S. Ohta, C. Otani, N. Okada, A. Okamoto, A. Okamoto, T. Okamura, G. Rebeiz, P. Richards, S. Sakai, N. Sato, Y. Sato, Y. Segawa, S. Sekiguchi, Y. Sekimoto, M. Sekine, U. Seljak, B. Sherwin, K. Shinozaki, S. Shu, R. Stompor, H. Sugai, H. Sugita, T. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takakura, K. Takano, Y. Takei, T. Tomaru, N. Tomita, P. Turin, S. Utsunomiya, Y. Uzawa, T. Wada, H. Watanabe, B. Westbrook, N. Whitehorn, Y. Yamada, N. Yamasaki, T. Yamashita, M. Yoshida, T. Yoshida, Y. Yotsumoto
    JOURNAL OF LOW TEMPERATURE PHYSICS 184(3-4) 824-831 2016年8月  査読有り
    LiteBIRD is a proposed CMB polarization satellite project to probe the inflationary B-mode signal. The satellite is designed to measure the tensor-to-scalar ratio with a 68 % confidence level uncertainty of , including statistical, instrumental systematic, and foreground uncertainties. LiteBIRD will observe the full sky from the second Lagrange point for 3 years. We have a focal plane layout for observing frequency coverage that spans 40-402 GHz to characterize the galactic foregrounds. We have two detector candidates, transition-edge sensor bolometers and microwave kinetic inductance detectors. In both cases, a telecentric focal plane consists of approximately superconducting detectors. We will present the mission overview of LiteBIRD, the project status, and the TES focal plane layout.
  • H. Ishino, Y. Akiba, K. Arnold, D. Barron, J. Borrill, R. Chendra, Y. Chinone, S. Cho, A. Cukierman, T. de Haan, M. Dobbs, A. Dominjon, T. Dotani, T. Elleflot, J. Errard, T. Fujino, H. Fuke, T. Funaki, N. Goeckner-Wald, N. Halverson, P. Harvey, T. Hasebe, M. Hasegawa, K. Hattori, M. Hattori, M. Hazumi, N. Hidehira, C. Hill, G. Hilton, W. Holzapfel, Y. Hori, J. Hubmayr, K. Ichiki, H. Imada, J. Inatani, M. Inoue, Y. Inoue, F. Irie, K. Irwin, H. Ishitsuka, O. Jeong, H. Kanai, K. Karatsu, S. Kashima, N. Katayama, I. Kawano, T. Kawasaki, B. Keating, S. Kernasovskiy, R. Keskitalo, A. Kibayashi, Y. Kida, N. Kimura, K. Kimura, T. Kisner, K. Kohri, E. Komatsu, K. Komatsu, C.-L. Kuo, S. Kuromiya, A. Kusaka, A. Lee, D. Li, E. Linder, M. Maki, H. Matsuhara, T. Matsumura, S. Matsuoka, S. Matsuura, S. Mima, Y. Minami, K. Mitsuda, M. Nagai, T. Nagasaki, R. Nagata, M. Nakajima, S. Nakamura, T. Namikawa, M. Naruse, T. Nishibori, K. Nishijo, H. Nishino, A. Noda, T. Noguchi, H. Ogawa, W. Ogburn, S. Oguri, I. Ohta, N. Okada, A. Okamoto, T. Okamura, C. Otani, G. Pisano, G. Rebeiz, P. Richards, S. Sakai, Y. Sakurai, Y. Sato, N. Sato, Y. Segawa, S. Sekiguchi, Y. Sekimoto, M. Sekine, U. Seljak, B. Sherwin, T. Shimizu, K. Shinozaki, S. Shu, R. Stompor, H. Sugai, H. Sugita, J. Suzuki, T. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takakura, K. Takano, S. Takatori, Y. Takei, D. Tanabe, T. Tomaru, N. Tomita, P. Turin, S. Uozumi, S. Utsunomiya, Y. Uzawa, T. Wada, H. Watanabe, B. Westbrook, N. Whitehorn, Y. Yamada, R. Yamamoto, N. Yamasaki, T. Yamashita, T. Yoshida, M. Yoshida, K. Yotsumoto
    Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave 9904 99040X 2016年7月29日  査読有り
    LiteBIRD is a next generation satellite aiming for the detection of the Cosmic Microwave Background (CMB) B-mode polarization imprinted by the primordial gravitational waves generated in the era of the inflationary universe. The science goal of LiteBIRD is to measure the tensor-to-scaler ratio r with a precision of delta r < 10(-3), offering us a crucial test of the major large-single-field slow-roll inflation models. LiteBIRD is planned to conduct an all sky survey at the sun-earth second Lagrange point (L2) with an angular resolution of about 0.5 degrees to cover the multipole moment range of 2 <= l <= 200. We use focal plane detector arrays consisting of 2622 superconducting detectors to measure the frequency range from 40 to 400 GHz with the sensitivity of 2.5 mu K.arcmin. We report an overview and the status of the project, including the ongoing studies.
  • K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, A. Itazaki, K. C. Kim, T. Kumazawa, A. Kusumoto, M. H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, K. Matsumoto, J. W. Mitchell, Z. Myers, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, N. Picot-Clemente, K. Sakai, M. Sasaki, E. S. Seo, Y. Shikaze, R. Shinoda, E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    ASTROPHYSICAL JOURNAL 822(2) 65 2016年5月  査読有り
    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei in the range 0.15-80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.
  • T. Aramaki, S. Boggs, S. Bufalino, L. Dal, P. von Doetinchem, F. Donato, N. Fornengo, H. Fuke, M. Grefe, C. Hailey, B. Hamilton, A. Ibarra, J. Mitchell, I. Mognet, R. A. Ong, R. Pereira, K. Perez, A. Putze, A. Raklev, P. Salati, M. Sasaki, G. Tarle, A. Urbano, A. Vittino, S. Wild, W. Xue, K. Yoshimura
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 618 1-37 2016年3月  査読有り
    Recent years have seen increased theoretical and experimental effort towards the first ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of cur rent experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Therefore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection. (C) 2016 Elsevier B.V. All rights reserved.
  • T. Aramaki, C. J. Hailey, S. E. Boggs, P. von Doetinchem, H. Fuke, S. I. Mognet, R. A. Ong, K. Perez, J. Zweerink
    ASTROPARTICLE PHYSICS 74 6-13 2016年2月  査読有り
    The General Antiparticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antiparticles, especially antideuterons. The GAPS antideuteron measurement utilizes distinctive detection methods using atomic X-rays and charged particles from the decay of exotic atoms as well as the timing and stopping range of the incoming particle, which together provide excellent antideuteron identification. Prior to the future balloon experiment, an accelerator test and a prototype flight were successfully conducted in 2005 and 2012 respectively, in order to verify the GAPS detection concept. This paper describes how the sensitivity of GAPS to antideuterons was estimated using a Monte Carlo simulation along with the atomic cascade model and the Intra-Nuclear Cascade model. The sensitivity for the GAPS antideuteron search obtained using this method is 2.0 x10(-6) [m(-2)s(-1)sr(-1)(GeV/n)(-1) ] for the proposed long duration balloon program (LDB, 35 days x 3 flights), indicating that GAPS has a strong potential to probe a wide variety of dark matter annihilation and decay models through antideuteron measurements. GAPS is proposed to fly from Antarctica in the austral summer of 2019-2020. (C) 2015 Elsevier B.V. All rights reserved.
  • FUKE Hideyuki, MIYAZAKI Yoshiro, MORI Junichi, NAGAI Hiroki, NONOMURA Taku, OGAWA Hiroyuki, OKAZAKI Shun, OKUBO Takuma, OZAKI Shinji, SATO Daisuke, SHIMIZU Kensei, ABE Takumi, TAKAHASHI Katsumasa, TAKAHASHI Shun, YAMADA Noboru, YOSHIDA Takanori, DAIMARU Takuro, INOUE Takayoshi, KAWACHI Akiko, KAWAI Hiroki, MASUYAMA Yosuke, MATSUMIYA Hiroaki, MATSUMOTO Daishi
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 14(30) Pi_17-Pi_26 2016年  査読有り
    <p>A cooling system using oscillating heat pipe (OHP) has been developed for a balloon-borne astrophysics project GAPS (General Anti-Particle Spectrometer). Taking advantages of OHP, such as high conductivity, low-power, and suitability for spread heat source, OHP is planned to be used to cool the GAPS core detectors. OHP is a novel technique and it has never been utilized in practical use neither for a spacecraft nor for a balloon-craft, regardless of its many advantages. In these several years, we have investigated OHP's suitability for GAPS step by step. At first, we have succeeded in developing a scaleddown OHP model with a three-dimensional routing, which can operate in a wide temperature range around between 230 K and 300 K. We also succeeded in the first OHP flight demonstration with a prototype GAPS balloon experiment. Subsequently, we developed actual-sized OHP models with various routings. Numerical simulation models have been developed in parallel to further optimize the OHP design by understanding the OHP performance both macroscopically and microscopically. The design of the OHP check valve has been improved as well. This paper discusses the latest status of the GAPS-OHP development.</p>
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, J. H. Buckley, G. Castellini, M. L. Cherry, G. Collazuol, K. Ebisawa, V. Di Felice, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, M. H. Israel, A. Javaid, E. Kamioka, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, N. Kawanaka, H. Kitamura, T. Kotani, H. S. Krawczynski, J. F. Krizmanic, A. Kubota, S. Kuramata, T. Lomtadze, P. Maestro, L. Marcelli, P. S. Marrocchesi, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, F. Palma, P. Papini, B. F. Rauch, S. B. Ricciarini, T. Sakamoto, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    Journal of Physics: Conference Series 632(1) 012023 2015年8月13日  査読有り
    © Published under licence by IOP Publishing Ltd. The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, J. H. Buckley, G. Castellini, M. L. Cherry, G. Collazuol, K. Ebisawa, V. Di Felice, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, M. H. Israel, A. Javaid, E. Kamioka, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, N. Kawanaka, H. Kitamura, T. Kotani, H. S. Krawczynski, J. F. Krizmanic, A. Kubota, S. Kuramata, T. Lomtadze, P. Maestro, L. Marcelli, P. S. Marrocchesi, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, F. Palma, P. Papini, B. F. Rauch, S. B. Ricciarini, T. Sakamoto, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    EPJ Web of Conferences 95 2015年5月29日  査読有り
    © Owned by the authors, published by EDP Sciences, 2015. The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).
  • Niita, Tae, Torii, Shoji, Kasahara, Katsuaki, Murakami, Hiroyuki, Ozawa, Shunsuke, Ueyama, Yoshitaka, Akaike, Yosui, Tamura, Tadahisa, Yoshida, Kenji, Katayose, Yusaku, Shimizu, Yuki, Fuke, Hideyuki
    Advances in Space Research 55(2) 753-760 2015年  査読有り
  • Masao Kikuchi, Takehiko Ishikawa, Shin Yamamoto, Shujiro Sawai, Yusuke Maru, Shinichiro Sakai, Nobutaka Bando, Shigehito Shimizu, Hiroaki Kobayashi, Tetsuo Yoshimitsu, Yuji Kan, Takanari Mizushima, Seijiro Fukuyama, Junpei Okada, Shinichi Yoda, Hideyuki Fuke, Yuya Kakehashi, Tatsuaki Hashimoto
    INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION 32(2) 320211 2015年  査読有り
    A microgravity experiment system using a high altitude balloon has been developed. In order to accommodate payloads larger than previous system which employed three- dimensional drag-free control, one-dimensional drag-free control has been applied. The first test flight was conducted in Aug. 2014. A gravity level below 10(-3) G was obtained for more than 30 seconds during the free-fall of the capsule. A combustion experiment was conducted during the low gravity condition.
  • 丸祐介, 石川毅彦, 坂東信尚, 澤井秀次郎, 清水成人, 坂井真一郎, 吉光徹雄, 小林弘明, 菊池政雄, 山本信, 福山誠二郎, 岡田純平, 菅勇志, 梯友哉, 福家英之, 伊藤琢博, 水島隆成, 江口光
    日本航空宇宙学会論文集 63(6) 257-264 2015年  査読有り
    In this paper is presented a microgravity experiment system utilizing a high altitude balloon. The feature is a double shell structure of a vehicle that is dropped off from the balloon and a microgravity experiment section that is attached to the inside of the vehicle with a liner slider. Control with cold gas jet thrusters of relative position of the experiment section to the vehicle and attitude of the vehicle maintains fine microgravity environment. The design strategy of the vehicle is explained, mainly referring to differences from the authors' previous design. The result of the flight experiment is also shown to evaluate the characteristics of the presented system.
  • O. Adriani, Y. Akaike, Y. Asaoka, K. Asano, M. G. Bagliesi, G. Bigongiari, W. R. Binns, M. Bongi, J. H. Buckley, A. Cassese, G. Castellini, M. L. Cherry, G. Collazuol, K. Ebisawa, V. di Felice, H. Fuke, T. G. Guzik, T. Hamsa, N. Hasebe, M. Hareyama, K. Hibino, M. Ichimura, K. Ioka, M. H. Israel, A. Javaid, E. Kamioka, K. Kasahara, Y. Katayose, J. Kataoka, R. Kataoka, N. Kawanaka, H. Kitamura, T. Kotani, H. S. Krawczynski, J. F. Krizmanic, A. Kubota, S. Kuramata, T. Lomtadze, P. Maestro, L. Marcelli, P. S. Marrocchesi, J. W. Mitchell, S. Miyake, K. Mizutani, H. M. Motz, A. A. Moiseev, K. Mori, M. Mori, N. Mori, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, F. Palma, P. Papini, B. F. Rauch, S. Ricciarini, T. Sakamoto, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    Nuclear Physics B - Proceedings Supplements 256-257 225-232 2014年12月1日  査読有り
    © 2014 Elsevier B.V. The CALorimetric Electron Telescope (CALET) space experiment, currently under development by Japan in collaboration with Italy and the United States, will measure the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma rays to 10 TeV and nuclei with Z=1 to 40 up to 1,000 TeV during a two-year mission on the International Space Station (ISS), extendable to five years. These measurements are essential to search for dark matter signatures, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument will be launched to the ISS within 2014 Japanese Fiscal Year (by the end of March 2015) and installed on the Japanese Experiment Module-Exposed Facility (JEM-EF). In this paper, we will review the status and main science goals of the mission and describe the instrument configuration and performance.
  • Shun Okazaki, Hideyuki Fuke, Yoshiro Miyazaki, Hiroyuki Ogawa
    Journal of Astronomical Instrumentation 03(02) 1440004-1440004 2014年11月  査読有り
    A meter-scale Oscillating Heat Pipe (OHP) has been developed for the General Anti-Particle Spectrometer (GAPS) project. Two types of OHP routing, U-shaped and O-shaped, have been investigated. For the operation at low temperature, R410A was used as the working fluid. As the result of the investigation, we verified for the first time that both the meter-scale U-shaped and O-shaped OHPs can transfer heat under gravity in a wide temperature range between 20°C and -60°C. Generally, the O-shaped OHP showed better performance than the U-shaped OHP. Both OHP models showed good thermal conductance and a good amount of heat transport under the particular sets of conditions which meet the design requirements. In order to clarify the drive force to operate OHP to further improve the OHP design, the performance difference between the U-shaped and the O-shaped models has been interpreted in terms of the gravity effect and the pressure loss.
  • T. Matsumura, Y. Akiba, J. Borrill, Y. Chinone, M. Dobbs, H. Fuke, A. Ghribi, M. Hasegawa, K. Hattori, M. Hattori, M. Hazumi, W. Holzapfel, Y. Inoue, K. Ishidoshiro, H. Ishino, H. Ishitsuka, K. Karatsu, N. Katayama, I. Kawano, A. Kibayashi, Y. Kibe, K. Kimura, N. Kimura, K. Koga, M. Kozu, E. Komatsu, A. Lee, H. Matsuhara, S. Mima, K. Mitsuda, K. Mizukami, H. Morii, T. Morishima, S. Murayama, M. Nagai, R. Nagata, S. Nakamura, M. Naruse, K. Natsume, T. Nishibori, H. Nishino, A. Noda, T. Noguchi, H. Ogawa, S. Oguri, I. Ohta, C. Otani, P. Richards, S. Sakai, N. Sato, Y. Sato, Y. Sekimoto, A. Shimizu, K. Shinozaki, H. Sugita, T. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takakura, Y. Takei, T. Tomaru, Y. Uzawa, T. Wada, H. Watanabe, M. Yoshida, N. Yamasaki, T. Yoshida, K. Yotsumoto
    JOURNAL OF LOW TEMPERATURE PHYSICS 176(5-6) 733-740 2014年9月  査読有り
    LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio to an uncertainty of . In order to achieve this goal we will employ a kilo-pixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4 K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors. In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2 K arcmin over the frequency range 50-320 GHz.
  • T. Aramaki, S. E. Boggs, P. von Doetinchem, H. Fuke, C. J. Hailey, S. A. I. Mognet, R. A. Ong, K. Perez, J. Zweerink
    ASTROPARTICLE PHYSICS 59 12-17 2014年7月  査読有り
    The general antiparticle spectrometer (GAPS) experiment is a proposed indirect dark matter search focusing on antiparticles produced by WIMP (weakly interacting massive particle) annihilation and decay in the Galactic halo. In addition to the very powerful search channel provided by antideuterons (Donato et al., 2000, 2008) [1,2], (Vittino et al.) [3], (Fornengo, 2013) [4], GAPS has a strong capability to measure low-energy antiprotons (0.07 &lt;= E &lt;= 0.25 GeV) as dark matter signatures. This is an especially effective means for probing light dark matter, whose existence has been hinted at in the direct dark matter searches, including the recent result from the CDMS-II experiment (Agnese, 2013) [5]. While severely constrained by LUX and other direct dark matter searches (Akerib et al.) [6], light dark matter candidates are still viable in an isospin-violating dark matter scenario and halo-independent analysis (Del Nobile et al.) [7,8]. Along with the excellent antideuteron sensitivity, GAPS will be able to detect an order of magnitude more low-energy antiprotons, compared to BESS (Abe et al., 2012) [9], (Onto et al., 2000) [10], PAMELA (Adriani et al., 2010) [11] and AMS-02 (Casaus, 2009) [12], providing a precision measurement of low-energy antiproton flux and a unique channel for probing light dark matter models. Additionally, dark matter signatures from gravitinos and Kaluza-Klein right-handed neutrinos as well as evidence of primordial black hole evaporation can be observed through low-energy antiproton search. (C) 2014 Elsevier B.V. All rights reserved.
  • K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, A. Itazaki, K. C. Kim, T. Kumazawa, A. Kusumoto, M. H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, K. Matsumoto, J. W. Mitchell, A. A. Moiseev, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, N. Picot-Clemente, K. Sakai, M. Sasaki, E. S. Seo, Y. Shikaze, R. Shinoda, R. E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    ADVANCES IN SPACE RESEARCH 53(10) 1426-1431 2014年5月  査読有り
    The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data. Published by Elsevier Ltd. on behalf of COSPAR.
  • P. von Doetinchem, T. Aramaki, N. Bando, S. E. Boggs, H. Fuke, F. H. Gahbauer, C. J. Hailey, J. E. Koglin, S. A. I. Mognet, N. Madden, S. Okazaki, R. A. Ong, K. M. Perez, T. Yoshida, J. Zweerink
    ASTROPARTICLE PHYSICS 54 93-109 2014年2月  査読有り
    The General AntiParticle Spectrometer experiment (GAPS) is foreseen to carry out a dark matter search using low-energy cosmic ray antideuterons at stratospheric altitudes with a novel detection approach. A prototype flight from Taiki, Japan was carried out in June 2012 to prove the performance of the GAPS instrument subsystems (Lithium-drifted Silicon tracker and time-of-flight) and the thermal cooling concept as well as to measure background levels. The flight was a success and the stable flight operation of the GAPS detector concept was proven. During the flight about 10(6) charged particle triggers were recorded, extensive X-ray calibrations of the individual tracker modules were performed by using an onboard X-ray tube, and the background level of atmospheric and cosmic X-rays was measured. The behavior of the tracker performance as a function of temperature was investigated. The tracks of charged particle events were reconstructed and used to study the tracking resolution, the detection efficiency of the dacker, and coherent X-ray backgrounds. A timing calibration of the time-of-flight subsystem was performed to measure the particle velocity. The flux as a function of flight altitude and as a function of velocity was extracted taking into account systematic instrumental effects. The developed analysis techniques will form the basis for future flights. (C) 2013 Elsevier B.V. All rights reserved.
  • S. A. I. Mognet, T. Aramaki, N. Bando, S. E. Boggs, P. von Doetinchem, H. Fuke, F. H. Gahbauer, C. J. Hailey, J. E. Koglin, N. Madden, K. Mori, S. Okazaki, R. A. Ong, K. M. Perez, G. Tajiri, T. Yoshida, J. Zweerink
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 735 24-38 2014年1月  査読有り
    The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS (pGAPS) experiment was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agency's (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 h, with over 3 h at float altitude ( similar to 33 km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded. (C) 2013 Elsevier B.V. All rights reserved.
  • Okazaki, Shun, Fuke, Hideyuki, Ogawa, Hiroyuki, Miyazaki, Yoshiro
    IEEE Aerospace Conference Proceedings 8.1009 2014年  査読有り
  • T. Matsumura, Y. Akiba, J. Borrill, Y. Chinone, M. Dobbs, H. Fuke, M. Hasegawa, K. Hattori, M. Hattori, M. Hazumi, W. Holzapfel, Y. Hori, J. Inatani, M. Inoue, Y. Inoue, K. Ishidoshiro, H. Ishino, H. Ishitsuka, K. Karatsu, S. Kashima, N. Katayama, I. Kawano, A. Kibayashi, Y. Kibe, K. Kimura, N. Kimura, E. Komatsu, M. Kozu, K. Koga, A. Lee, H. Matsuhara, S. Mima, K. Mitsuda, K. Mizukami, H. Morii, T. Morishima, M. Nagai, R. Nagata, S. Nakamura, M. Naruse, T. Namikawa, K. Natsume, T. Nishibori, K. Nishijo, H. Nishino, A. Noda, T. Noguchi, H. Ogawa, S. Oguri, I. S. Ohta, N. Okada, C. Otani, P. Richards, S. Sakai, N. Sato, Y. Sato, Y. Segawa, Y. Sekimoto, K. Shinozaki, H. Sugita, A. Suzuki, T. Suzuki, O. Tajima, S. Takada, S. Takakura, Y. Takei, T. Tomaru, Y. Uzawa, T. Wada, H. Watanabe, Y. Yamada, H. Yamaguchi, N. Yamasaki, M. Yoshida, T. Yoshida, K. Yotsumoto
    SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE 9143 91431F 2014年  査読有り
    We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of delta r = 0.001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be de fined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.
  • Fuke, Hideyuki, Iijima, Issei, Izutsu, Naoki, Matsuzaka, Yukihiko, Kato, Yoichi, Kakehashi, Yuya, Shoji, Yasuhiro, Yoshida, Tetsuya, Honda, Hideyuki, Aoki, Shuji, Inai, Yoichi, Inai, Yoichi, Morimoto, Shinji, Morimoto, Shinji
    Journal of Atmospheric and Oceanic Technology 31(7) 1540-1548 2014年  査読有り
  • Shun Okazaki, Hideyuki Fuke, Hiroyuki Ogawa, Yoshiro Miyazaki
    2014 IEEE AEROSPACE CONFERENCE 3(2) 1440004 2014年  査読有り
    Meter-scale Oscillating Heat Pipe (OHP) has been developed for the General Anti Particle Spectrometer (GAPS) project. Two types of the OHP routing have been investigated. One is a U-shaped routing and the other is an O-shaped routing. For the operation at low temperature, R410A was used as the working fluid. As the result of the investigation, we verified for the first time that both the meter-scale O-shaped and U-shaped OHPs can transfer heat in gravity at low temperature. Between the heat input section and the radiator section, the thermal conductance larger than 10 W/K was achieved under particular sets of conditions. In terms of thermal characteristics, the O-shaped OHP showed better performance than the U-shaped OHP. The O-shaped OHP started up more quickly than the U-shaped OHP at low temperature. The temperature uniformity of the O-shaped-OHP heating section was also better without drying-out at around the top of the heating section. The U-shaped OHP could transfer heat at temperatures above around 240 K, and the O-shaped OHP could transfer heat at temperatures above around 210 K. We consider the O-shaped OHP utilizes the gravity to assist the circulation of the working fluid resulting in better performance.
  • Hideyuki Fuke, Rene A Ong, Tsuguo Aramaki, Nobutaka Bando, Steven E Boggs, Philip v Doetinchem, Florian H Gahbauer, Charles J Hailey, Jason E Koglin, Norm Madden, Samuel Adam I Mognet, Kaya Mori, Shun Okazaki, Kerstin M Perez, Tetsuya Yoshida, Jeffrey Zweerink
    ADVANCES IN SPACE RESEARCH 53(10) 1432-1437 2013年3月2日  
    The General Anti-Particle Spectrometer (GAPS) project is being carried out to search for primary cosmic-ray antiparticles especially for antideuterons produced by cold dark matter. GAPS plans to realize the science observation by Antarctic long duration balloon flights in the late 2010s. In preparation for the Antarctic science flights, an engineering balloon flight using a prototype of the GAPS instrument, "pGAPS", was successfully carried out in June 2012 in Japan to verify the basic performance of each GAPS subsystem. The outline of the pGAPS flight campaign is briefly reported.
  • Kim K. C, Abe K, Fuke H, Hams T, Lee M. H, Makida Y, Matsuda S, Mitchell J. W, Nishimura J, Ormes J. F, Sasaki M, Seo E. S, Shikaze Y, Streitmatter R. E, Suzuki J, Tanaka K, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K
    ADVANCES IN SPACE RESEARCH 51(2) 234-237 2013年1月15日  査読有り
  • C. J. Hailey, T. Aramaki, S. E. Boggs, P. von Doetinchem, H. Fuke, F. Gahbauer, J. E. Koglin, N. Madden, S. A. I. Mognet, R. Ong, T. Yoshida, T. Zhang, J. A. Zweerink
    ADVANCES IN SPACE RESEARCH 51(2) 290-296 2013年1月  査読有り
    The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS. (c) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • A.Yamamoto, J.W.Mitchell, K.Yoshimura, K.Abe, H.Fuke, S.Haino, T.Hams, M.Hasegawa, A.Horikoshi, A.Itazaki, K.C.Kim, T.Kumazawa, A.Kusumoto, M.H.Lee, Y.Makida, S.Matsuda, Y.Matsukawa, K.Matsumoto, A.A.Moiseev, Z.Myers, J.Nishimura, M.Nozaki, R.Orito, J.F.Ormes, K.Sakai, M.Sasaki, E.S.Seo, Y.Shikaze, R.Shinoda, R.E.Streitmatter, J.Suzuki, Y.Takasugi, K.Takeuchi, K.Tanaka, T.Taniguchi, N.Thakur, T.Yamagami, T.Yoshida
    Adv. Space Res 51(2) 227-233 2013年  査読有り
  • K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, A. Itazaki, K.C. Kim, T. Kumazawa, A. Kusumoto, M.H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, K. Matsumoto, J.W. Mitchell, Z. Myers, J. Nishimura, M. Nozaki, R. Orito, J.F. Ormes, K. Sakai, M. Sasaki, E.S. Seo, Y. Shikaze, R. Shinoda, R.E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    Phys. Rev. Lett. 108, 131301 108(13) 2012年3月29日  査読有り
  • Saito Y, Akita D, Fuke H, Iijima I, Izutsu N, Kato Y, Kawada J, Matsuzaka Y, Mizuta E, Namiki M, Nonaka N, Ohta S, Sato T, Seo M, Takada A, Tamura K, Toriumi M, Yamagami T, Yamada K, Yoshida T, Matsushima K, Tanaka S
    ADVANCES IN SPACE RESEARCH 49(4) 613-620 2012年2月15日  査読有り
  • K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, K.C. Kim, A. Kusumoto, M.H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, J.W. Mitchell, J. Nishimura, M. Nozaki, R. Orito, J.F. Ormes, K. Sakai, M. Sasaki, E.S. Seo, R. Shinoda, R.E. Streitmatter, J. Suzuki, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    Phys. Rev. Lett. 108, 051102 108(5) 2012年1月31日  査読有り
  • Okazaki, Shun, Fuke, Hideyuki, Ogawa, Hiroyuki, Okubo, Takuma, Miyazaki, Yoshiro
    42nd International Conference on Environmental Systems 2012, ICES 2012 2012年  査読有り
  • T.G. Guzik, O. Adriani, K. Asano, M.G. Bagliesi, G. Bigongiari, W.R. Binns, M. Bongi, J.H. Buckley, G. Castellini, M.L. Cherry, G. Collazuol, K. Ebisawa, V. Di Felice, H. Fuke, A. Gherardi, T.G. Guzik, T. Hams, N. Hasebe, M. Hareyama, K. Hibino, M. Ichimura, K. Ioka, J. B. Isbert, M.H. Israel, E. Kamioka, K. Kasahara, Y. Katayose, J. Kataoka, R. Kataoka, N. Kawanaka, M.Y. Kim, H. Kitamura, Y. Komori, T. Kotani, H.S. Krawczynski, J.F. Krizmanic, A. Kubota, S. Kuramata, T. Lomtadze, P. Maestro, L. Marcelli, P.S. Marrocchesi, V. Millucci, J.W. Mitchell, K.Mizutani, A.A. Moiseev, K.Mori, M. Mori, N. Mori, F. Morsani, K. Munakata, H. Murakami, Y.E.Nakagawa, J. Nishimura, S. Okuno, J.F. Ormes, S. Ozawa, P. Papini, B.F. Rauch, S.Ricciarini, Y. Saito, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J.P. Wefel, K. Yamaoka, A. Yoshida, K. Yoshida, T. Yuda
    Proc. 13th ICATPP Conf. on Astroparticle, Particle, Space Physics, Detectors for Physics Applications (Villa Olmo, Como, Italy) 2012年  
  • Hazumi M, Borrill J, Chinone Y, Dobbs MA, Fuke H, Ghribi A, Hasegawa M, Hattori K, Hattori M, Holzapfel WL, o
    8442 844219 2012年  査読有り
  • H. Fuke, N. Izutsu, D. Akita, I. Iijima, Y. Kato, J. Kawada, K. Matsushima, Y. Matsuzaka, E. Mizuta, M. Namiki, N. Nonaka, S. Ohta, Y. Saito, T. Sato, M. Seo, Y. Shoji, A. Takada, K. Tamura, M. Toriumi, K. Yamada, T. Yamagami, T. Yoshida
    ADVANCES IN SPACE RESEARCH 48(6) 1136-1146 2011年9月15日  査読有り
    The super-pressure balloon (SPB) has been expected to be a flight vehicle that can provide a long flight duration to science. Since 1997, we have developed the SPB. Now we are at the phase of developing an SPB of a practical size. In 2009, we carried out a test flight of a pumpkin-shaped SPB with a 60,000 m(3) volume. The undesirable result of this flight aroused us to resolve the deployment instability of the pumpkin-shaped SPB, which has been known as one of the most challenging issues confronting SPB development. To explore this deployment issue, in 2010, we carried out a series of ground tests. From results of these tests, we found that an SPB design modified from pumpkin, named "tawara", can be a good candidate to greatly improve the deployment stability of the lobed SPB. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • H.Fuke
    Trans. JSASS Aerospace Technology Japan 8(27) Tm_25-Tm_28 2011年  査読有り
    The Japanese balloon base was moved from the Sanriku Balloon Center (SBC) to the Taiki Aerospace Research Field (TARF). The SBC was closed in September 2007, and the new base at the TARF became operational in May 2008. In 2008, the first series of balloon flights at the TARF was carried out. By the success of these flights, we verified that the whole system of the new balloon base is well established. From FY 2009, regular balloon operations with science payloads started at the TARF. In May/June 2009, flight operations of three science experiments were carried out successfully. Five more science flights are planned at the TARF in August/September 2009.
  • K. Sakai, K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, K. C. Kim, A. Kusumoto, M. H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, J. W. Mitchell, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, M. Sasaki, E. S. Seo, R. Shinoda, R. E. Streitmatter, J. Suzuki, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011 6 111-114 2011年  査読有り
    The energy spectrum of cosmic-ray antiprotons (p's) has been measured in the range 0.17 to 3.5 GeV, based on 7886 p's collected by the BESS-Polar II instrument during a long duration flight over Antarctica in a Solar minimum period of December 2007 through January 2008. The p spectrum measured by BESS-Polar II shows good consistency with the secondary p calculations. Given this background of secondary p's, cosmologically primary p's have been searched for using the observed p spectrum. BESS-Polar II result shows no evidence of primary p's that originated from the evaporation of PBH.
  • K. Yoshimura, K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, K. C. Kim, A. Kusumoto, M. H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, J. W. Mitchell, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, K. Sakai, M. Sasaki, E. S. Seo, R. Shinoda, R. E. Streitmatter, J. Suzuki, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida
    Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011 5 195-198 2011年  査読有り
    Although cosmic-ray antideuterons can be produced in primary cosmic-ray interactions with the interstellar medium in the same way as cosmic-ray antiprotons, the probability is much smaller, especially at low energies, because of the very low production cross-section and strict kinematic requirement compared to secondary antiproton production. The lack of significant astrophysical background indicates that a search for low-energy antideuterons could be a good probe for a novel production mechanisms such as pair-annihilation of neutralino dark matter or evaporation of primordial black holes. The BESS-Polar program has accumulated cosmic-ray data in near solar minimum conditions with more than ten times the statistics of those obtained by BESS flights during the previous solar minimum period. Based on these data, we perform a new antideuteron search with unprecedented sensitivity.
  • N. Picot-Clemente, K. Abe, H. Fuke, S. Haino, T. Hams, A. Itazaki, K. C. Kim, T. Kumazawa, M. H. Lee, Y. Makida, S. Matsuda, K. Matsumoto, J. W. Mitchell, Z. Myers, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, M. Sasaki, E. S. Seo, Y. Shikaze, R. E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011 6 51-54 2011年  査読有り
    The first flight of the Balloon-Borne Experiment with a Superconducting Spectrometer (BESS-Polar I) in Antarctica collected about 900 million cosmic ray events during 8.5 days in 2004. Particle charge was determined from energy loss in the scintillators, rigidity by reconstructing each particle trajectory in the magnetic field, and velocity by utilizing time of flights counters. These measurements can clearly identify hydrogen and helium isotopes among the incoming particles. These isotopes are generally believed to result from nuclear interactions of primaries with the interstellar medium. Measurement of their flux is expected to provide important information on cosmic ray sources and particle propagation in interstellar space. The presentation will focus on determination of the helium isotope flux in the kinetic energy per nucleon range 0.1 GeV/n to about 1.5 GeV/n. After quickly introducing the BESS-Polar I detector, the dedicated analysis to differentiate isotopes will be described. Finally, the energy spectra will be presented and compared to previous measurements.
  • M. Sasaki, K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, A. Itazaki, K. C. Kim, T. Kumazawa, A. Kusumoto, M. H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, K. Matsumoto, J. W. Mitchell, Z. Myers, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, K. Sakai, E. S. Seo, Y. Shikaze, R. Shinoda, R. E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011 5 123-126 2011年  査読有り
    We have searched for antihelium in cosmic-rays since 1993 using a series of nine conventional BESS northern latitude balloon flights and two long-duration BESS-Polar Antarctic balloon flights. The BESS-Polar spectrometer is an evolutionary development of the previous BESS instruments, adapted to long duration flight. No antihelium candidate was found in the rigidity ranges of 0.6-20 GV among 8 × 106 helium nuclei events for BESS-Polar I and in the rigidity range of 0.6-14 GV among 4 × 107 events for BESS-Polar II, respectively. A resultant upper limit of 6.9 × 10 -8 for the abundance ratio of antihelium/helium at the top of the atmosphere in the rigidity range of 1-14 GV was set by combining all the BESS and BESS-Polar flight data. This is the most stringent limit obtained to date.
  • N. Thakur, K. Abe, H. Fuke, S. Haino, T. Hams, A. Itazaki, K. C. Kim, T. Kumazawa, M. H. Lee, Y. Makida, S. Matsuda, K. Matsumoto, J. W. Mitchell, Z. Myers, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, M. Sasaki, E. S. Seo, Y. Shikaze, R. E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011 11 220-223 2011年  査読有り
    BESS (Balloon-borne Experiment with a Superconducting Spectrometer) had its first circumpolar flight from Williams Field near McMurdo Station, Antarctica from Dec. 13 to 21, 2004. Our sub-1% precision reveals BESS-Polar I proton fluxes exhibit transient variations at the few1% level. The time progression of proton flux has three main features a rising flux at the beginning of the flight, a transition region around Dec. 17, followed by quasi-periodic variation. Neutron monitor data show that the BESS-Polar I flight occurred during the recovery phase of a small Forbush decrease. The solar wind plasma and particle data show that this flight took place during the tail end of a high-energy, multiple-eruption solar energetic particle (SEP) event. A high speed solar wind stream arrived near the Earth around Dec. 17, 2004. We present the flux progression as a function of energy between 0.1 - 100.0 GeV and suggest possible physical interpretations.
  • Ozawa, Shunsuke, Torii, Shoji, Kasahara, Katsuaki, Murakami, Hiroyuki, Akaike, Yosui, Ueyama, Yoshitaka, Ito, Daijiro, Karube, Motohiko, Kondo, Keinosuke, Niita, Tae, Tamura, Tadahisa, Katayose, Yusaku, Yoshida, Kenji, Saito, Yoshitaka, Fuke, Hideyuki, Kawada, Jiro
    Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011 6 71-74 2011年  査読有り
  • K. Yoshida, O. Adriani, K.Asano, M.G. Bagliesi, G. Bigongiari, W.R. Binns, M.Bongi, J.Buckley, G. Castellini, M.L. Cherry, G. Collazuol, K. Ebisawa, V. Di Felice, H. Fuke, A.Gherardi, T.G. Guzik, T. Hams, N. Hasebe, M. Hareyama, K. Hibino, M. Ichimura, J. B. Isbert, E. Kamioka, K. Kasahara, Y. Katayose, J. Kataoka, R.Kataoka, N. Kawanaka, M.Y. Kim, H. Kitamura, Y. Komori, T. Kotani, H.S. Krawczynski, J.F. Krizmanic, A. Kubota, S. Kuramata, T.Lomtadze, P. Maestro, L. Marcelli, P. S. Marrocchesi, V. Millucci, J.W. Mitchell, K. Mizutani, A.A. Moiseev, K.Mori, M. Mori, N.Mori, F. Morsani, K. Munakata, H. Murakami, Y.E.Nakagawa, J. Nishimura, S. Okuno, J.F. Ormes, S. Ozawa, P. Papini, B.Rauch, S.Ricciarini, Y. Saito, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J.P. Wefel, K.Yamaoka, A. Yoshida, T. Yuda
    OG1.5(0615) 2011年  
  • S. Torii, O. Adriani, K.Asano, M.G. Bagliesi, G. Bigongiari, W.R. Binns, M.Bongi, J.Buckley, G. Castellini, M.L. Cherry, G. Collazuol, K. Ebisawa, V. Di Felice, H. Fuke, A.Gherardi, T.G. Guzik, T. Hams, N. Hasebe, M. Hareyama, K. Hibino, M. Ichimura, J. B. Isbert, E. Kamioka, K. Kasahara, Y. Katayose, J. Kataoka, R.Kataoka, N. Kawanaka, M.Y. Kim, H. Kitamura, Y. Komori, T. Kotani, H.S. Krawczynski, J.F. Krizmanic, A. Kubota, S. Kuramata, T.Lomtadze, P. Maestro, L. Marcelli, P. S. Marrocchesi, V. Millucci, J.W. Mitchell, K. Mizutani, A.A. Moiseev, K.Mori, M. Mori, N.Mori, F. Morsani, K. Munakata, H. Murakami, Y.E.Nakagawa, J. Nishimura, S. Okuno, J.F. Ormes, S. Ozawa, P. Papini, B.Rauch, S.Ricciarini, Y. Saito, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J.P. Wefel, K.Yamaoka, A. Yoshida, K. Yoshida, T. Yuda
    Proc. Intl. Cosmic Ray Conf., Beijing, OG1.5, 0766 (2011) 5(0766) 2011年  
  • T. Aramaki, S. E. Boggs, W. W. Craig, H. Fuke, F. Gahbauer, C. J. Hailey, J. E. Koglin, N. Madden, K. Mori, R. A. Ong, T. Yoshida
    ADVANCES IN SPACE RESEARCH 46(11) 1349-1353 2010年12月  査読有り
    The General AntiParticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antideuterons. GAPS complements existing and planned direct dark matter searches as well as other indirect techniques, probing a different and unique region of parameter space in a variety of proposed dark matter models. The GAPS method involves capturing antiparticles into a target material with the subsequent formation of an excited exotic atom. The exotic atom decays with the emission of atomic X-rays and pions from the nuclear annihilation, which uniquely identifies the captured antiparticle. This technique has been verified through the accelerator testing at KEK in 2004 and 2005. The prototype flight is scheduled from Hokkaido, Japan in 2011, preparatory for a long duration balloon flight from the Antarctic in 2014. Published by Elsevier Ltd. on behalf of COSPAR.
  • Saito Y, Akita D, Fuke H, Izutsu N
    ADVANCES IN SPACE RESEARCH 45(4) 482-489 2010年2月15日  査読有り
  • H. Fuke, D. Akita, I. Iijima, N. Izutsu, Y. Kato, J. Kawada, Y. Matsuzaka, E. Mizuta, M. Namiki, N. Nonaka, S. Ohta, Y. Saito, M. Seo, A. Takada, K. Tamura, M. Toriumi, K. Yamada, T. Yamagami, T. Yoshida
    ADVANCES IN SPACE RESEARCH 45(4) 490-497 2010年2月  査読有り
    Since 1971, numerous balloons have been launched from the Japanese balloon base, the Sanriku Balloon Center (SBC). Through these years, balloon technologies have been developed continuously and many scientific achievements have resulted. Recently, however, because of the limited area of the launching pad of the SBC, we have been faced with the difficulty of safely launching large balloons. To solve this issue, we decided to move the balloon base from the SBC to the Taiki Aerospace Research Field (TARF) in northern Japan. The TARF had an existing huge hanger and a paved launch pad capable of being utilised for balloon operations. To evolve the TARF into a new balloon base, new balloon facilities have been constructed at the TARF and equipment was transferred from the SBC to the TARF during July 2007 and March 2008. The SBC was closed in September 2007, and the new base became operational in May 2008. The new base at the TARF is designed to launch larger balloons with greater safety and to perform balloon operations more effectively than ever before. In the summer of 2008, we carried out the first series of the balloon campaign at the TARF, and succeeded in two engineering flights of stratospheric balloons. By the success of these flights, we have verified that the whole system of the new balloon base is well established. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • N.Izutsu, D.Akita, H.Fuke, I.Iijima, Y.Kato, J.Kawada, K.Matsushima, Y.Matsuzaka, E.Mizuta, T.Nakada, N.Nonaka, Y.Saito, A.Takada, K.Tamura, K.Yamada, T.Yoshida
    Trans. of Japan Soc. Aeronautical and Space Sci., Aerospace Tech. Japan 8(27) Pm_7-Pm_13 2010年  査読有り
    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the 'lobed-pumpkin' type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly 'lobed pumpkin with lobed cylinder' and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.
  • FUKE Hideyuki, AKITA Daisuke, IIJIMA Issei, IZUTSU Naoki, KATO Yoichi, KAWADA Jiro, MATSUZAKA Yukihiko, MIZUTA Eiichi, NAMIKI Michiyoshi, NONAKA Naoki, OHTA Shigeo, SAITO Yoshitaka, SEO Motoharu, TAKADA Atsushi, TAMURA Keisuke, TORIUMI Michihiko, YAMADA Kazuhiko, YAMAGAMI Takamasa, YOSHIDA Tetsuya
    Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan (Web) 7(ists26) Tm_7-Tm_11 2009年  査読有り
  • C. J. Hailey, T. Aramaki, H. Fuke, J. E. Koglin, K. Mori, N. Madden, T. Yoshida
    SOURCES AND DETECTION OF DARK MATTER AND DARK ENERGY IN THE UNIVERSE 1166 163-+ 2009年  査読有り
    We report on recent work on the General Antiparticle Spectrometer Experiment (GAPS). GAPS is a balloon-based search for antideuterons generated in the annihilation of weakly interacting massive particles. Antideuterons provide an extremely clean signature of dark matter. It is difficult to produce backgrounds that mimic the annihilation antideuterons. GAPS consists of a time-of-flight system combined with a multi-layer particle tracker composed of pixellated Si(Li) detectors. When an antideuteron enters the telescope it slows down and is captured in a silicon atom. The resultant exotic atom deexcites with the emission of multiple atomic X-rays, and a shower of subatomic particles when the antideuteron enters the nucleus from the atomic ground state. The atomic Xrays, TOF, depth sensing and charged particle multiplicity provide an extremely stringent particle identification capability. GAPS can improve the current BESS experiment antideuteron limits by more than three orders of magnitude and access a large part of beyond standard model physics parameter spaces.

MISC

 257
  • 水越彗太, 福家英之, 小川博之, 岡崎峻, 高橋俊, 山谷昌大, 吉田哲也, 清水雄輝, 入江優花, 永井大洋, 鈴木俊介, 佐々木文哉, 和田拓也, 吉田篤正, 小財正義, 加藤千尋, 宗像一起, 平井克樹, 河内明子, 川本裕樹, 木間快, 奈良祥太朗, 清水望, Chuck Hailey, Mirko Boezio, GAPS Collaboration
    日本物理学会2024年春季大会 20aV1-11 2024年3月20日  
  • 鳥居祥二, 赤池陽水, 小林兼好, 田村忠久, 森正樹, 浅岡陽一, 浅野勝晃, 福家英之, 日比野欣也, 市村雅一, 笠原克昌, 片岡龍峰, 片寄祐作, 加藤千尋, 川久保雄太, 三宅晶子, MOTZ Holger, 宗像一起, 中平聡志, 奥野祥二, 小沢俊介, 坂本貴紀, 清水雄輝, 塩見昌司, 常定芳基, 山岡和貴, 柳田昭平, 吉田篤正, 吉田健二, 他CALETチーム
    日本物理学会2024年春季大会 18aW3-1 2024年3月18日  
  • 平井克樹, 川本裕樹, 奈良祥太朗, 高橋俊, 河内明子, 岡崎峻, 福家英之
    第37回数値流体力学シンポジウム 1401-05-05 2023年12月15日  
  • 森英之, 八木邑磨, 丹野茉莉枝, 長島加奈, 福家英之
    宇宙航空研究開発機構宇宙科学研究所大気球シンポジウム (2023年度) isas23-sbs-045 2023年10月24日  
  • 菅原敏, 森本真司, 青木周司, 本田秀之, 中澤高清, 豊田栄, 石戸谷重之, 後藤大輔, 梅澤拓, 長谷部文雄, 石島健太郎, 飯嶋一征, 福家英之
    宇宙航空研究開発機構宇宙科学研究所大気球シンポジウム (2023年度) isas23-sbs-037 2023年10月24日  

講演・口頭発表等

 130

共同研究・競争的資金等の研究課題

 12

● 指導学生等の数

 5
  • 年度
    2020年度(FY2020)
    博士課程学生数
    1
    修士課程学生数
    2
    連携大学院制度による学生数
    3
    技術習得生の数
    2
  • 年度
    2019年度(FY2019)
    博士課程学生数
    1
    修士課程学生数
    4
    連携大学院制度による学生数
    4
    技術習得生の数
    4
  • 年度
    2018年度(FY2018)
    博士課程学生数
    1
    修士課程学生数
    2
    連携大学院制度による学生数
    3
    受託指導学生数
    1
    技術習得生の数
    2
  • 年度
    2021年度(FY2021)
    博士課程学生数
    1
    修士課程学生数
    2
    連携大学院制度による学生数
    2
    技術習得生の数
    3
  • 年度
    2022年度(FY2022)
    博士課程学生数
    1
    技術習得生の数
    3
    その他
    2

● 専任大学名

 1
  • 専任大学名
    総合研究大学院大学(SOKENDAI)

● 所属する所内委員会

 4
  • 所内委員会名
    宇宙理学委員会
  • 所内委員会名
    大気球専門委員会
  • 所内委員会名
    観測ロケット専門委員会
  • 所内委員会名
    大樹航空宇宙実験場連絡会