研究者業績

高倉 隼人

Hayato TAKAKURA

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 宇宙航空プロジェクト研究員

研究者番号
10980948
ORCID ID
 https://orcid.org/0000-0001-9823-1920
J-GLOBAL ID
202001020525555639
researchmap会員ID
R000014175

研究キーワード

 2

論文

 16
  • U. Fuskeland, J. Aumont, R. Aurlien, C. Baccigalupi, A. J. Banday, H. K. Eriksen, J. Errard, R. T. Genova-Santos, T. Hasebe, J. Hubmayr, H. Imada, N. Krachmalnicoff, L. Lamagna, G. Pisano, D. Poletti, M. Remazeilles, K. L. Thompson, L. Vacher, I. K. Wehus, S. Azzoni, M. Ballardini, R. B. Barreiro, N. Bartolo, A. Basyrov, D. Beck, M. Bersanelli, M. Bortolami, M. Brilenkov, E. Calabrese, A. Carones, F. J. Casas, K. Cheung, J. Chluba, S. E. Clark, L. Clermont, F. Columbro, A. Coppolecchia, G. D'Alessandro, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, P. Diego-Palazuelos, F. Finelli, C. Franceschet, G. Galloni, M. Galloway, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, E. Gjerlow, A. Gruppuso, P. Hargrave, M. Hattori, M. Hazumi, L. T. Hergt, D. Herman, D. Herranz, E. Hivon, T. D. Hoang, K. Kohri, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, A. I. Lonappan, G. Luzzi, B. Maffei, E. Martinez-Gonzalez, S. Masi, S. Matarrese, T. Matsumura, M. Migliaccio, L. Montier, G. Morgante, B. Mot, L. Mousset, R. Nagata, T. Namikawa, F. Nati, P. Natoli, S. Nerval, A. Novelli, L. Pagano, A. Paiella, D. Paoletti, G. Pascual-Cisneros, G. Patanchon, V. Pelgrims, F. Piacentini, G. Piccirilli, G. Polenta, G. Puglisi, N. Raffuzzi, A. Ritacco, J. A. Rubino-Martin, G. Savini, D. Scott, Y. Sekimoto, M. Shiraishi, G. Signorelli, S. L. Stever, N. Stutzer, R. M. Sullivan, H. Takakura, L. Terenzi, H. Thommesen, M. Tristram, M. Tsuji, P. Vielva, J. Weller, B. Westbrook, G. Weymann-Despres, E. J. Wollack, M. Zannoni
    ASTRONOMY & ASTROPHYSICS 676 2023年8月  
    LiteBIRD is a planned JAXA-led cosmic microwave background (CMB) B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, dr, down to dr < 0.001. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust spectral energy distribution, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compared the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the High-Frequency Telescope (HFT) frequency range was shifted logarithmically toward higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measured the tensor-to-scalar ratio r uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on r after foreground cleaning may be reduced by as much as 30-50% by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to higher residuals when fitting an incorrect dust model, but also it is easier to discriminate between models through higher X-2 sensitivity. Even in the case in which the fitting procedure does not correspond to the underlying dust model in the sky, and when the highest frequency data cannot be modeled with sufficient fidelity and must be excluded from the analysis, the uncertainty on r increases by only about 5% for a 500 GHz configuration compared to the baseline.
  • Ryo Nakano, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Shugo Oguri, Frederick Matsuda
    Journal of Astronomical Telescopes, Instruments, and Systems 9(02) 2023年4月19日  査読有り
  • Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Shingo Kashima, Masahiro Sugimoto, Ryo Nakano, Ryo Nagata
    Journal of Astronomical Telescopes, Instruments, and Systems 9(02) 2023年4月12日  査読有り筆頭著者
  • T. Hasebe, P. A. R. Ade, A. Adler, E. Allys, D. Alonso, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, S. Azzoni, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, N. Bartolo, S. Basak, E. Battistelli, L. Bautista, J. Beall, D. Beck, S. Beckman, K. Benabed, J. Bermejo-Ballesteros, M. Bersanelli, J. Bonis, J. Borrill, F. Bouchet, F. Boulanger, S. Bounissou, M. Brilenkov, M. L. Brown, M. Bucher, E. Calabrese, M. Calvo, P. Campeti, A. Carones, F. J. Casas, A. Catalano, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. Cliche, F. Columbro, W. Coulton, J. Cubas, A. Cukierman, D. Curtis, G. D’Alessandro, K. Dachlythra, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, D. Douillet, L. Duband, A. Ducout, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, S. Galli, M. Galloway, K. Ganga, J. R. Gao, R. T. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, E. Gjerløw, M. L. Gradziel, J. Grain, L. Grandsire, F. Grupp, A. Gruppuso, J. E. Gudmundsson, N. W. Halverson, J. Hamilton, P. Hargrave, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versillé, L. T. Hergt, D. Herman, D. Herranz, C. A. Hill, G. Hilton, E. Hivon, R. A. Hlozek, T. D. Hoang, A. L. Hornsby, Y. Hoshino, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, M. Jones, T. Kaga, S. Kashima, N. Katayama, A. Kato, T. Kawasaki, R. Keskitalo, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, I. Kreykenbohm, C. L. Kuo, A. Kushino, L. Lamagna, J. V. Lanen, G. Laquaniello, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, E. Linder, T. Louis, G. Luzzi, J. Macias-Perez, T. Maciaszek, B. Maffei, D. Maino, M. Maki, S. Mandelli, M. Maris, E. Martínez-González, S. Masi, M. Massa, S. Matarrese, F. T. Matsuda, T. Matsumura, L. Mele, A. Mennella, M. Migliaccio, Y. Minami, K. Mitsuda, A. Moggi, A. Monfardini, J. Montgomery, L. Montier, G. Morgante, B. Mot, Y. Murata, J. A. Murphy, M. Nagai, Y. Nagano, T. Nagasaki, R. Nagata, S. Nakamura, R. Nakano, T. Namikawa, F. Nati, P. Natoli, S. Nerval, T. Nishibori, H. Nishino, F. Noviello, C. O’Sullivan, K. Odagiri, H. Ogawa, H. Ogawa, S. Oguri, H. Ohsaki, I. S. Ohta, N. Okada, N. Okada, L. Pagano, A. Paiella, D. Paoletti, A. Passerini, G. Patanchon, V. Pelgrim, J. Peloton, F. Piacentini, M. Piat, G. Pisano, G. Polenta, D. Poletti, T. Prouvé, G. Puglisi, D. Rambaud, C. Raum, S. Realini, M. Reinecke, M. Remazeilles, A. Ritacco, G. Roudil, J. Rubino-Martin, M. Russell, H. Sakurai, Y. Sakurai, M. Sandri, M. Sasaki, G. Savini, D. Scott, J. Seibert, Y. Sekimoto, B. Sherwin, K. Shinozaki, M. Shiraishi, P. Shirron, G. Signorelli, G. Smecher, F. Spinella, S. Stever, R. Stompor, S. Sugiyama, R. Sullivan, A. Suzuki, J. Suzuki, T. L. Svalheim, E. Switzer, R. Takaku, H. Takakura, S. Takakura, Y. Takase, Y. Takeda, A. Tartari, D. Tavagnacco, A. Taylor, E. Taylor, Y. Terao, J. Thermeau, H. Thommesen, K. L. Thompson, B. Thorne, T. Toda, M. Tomasi, M. Tominaga, N. Trappe, M. Tristram, M. Tsuji, M. Tsujimoto, C. Tucker, J. Ullom, L. Vacher, G. Vermeulen, P. Vielva, F. Villa, M. Vissers, N. Vittorio, B. Wandelt, W. Wang, K. Watanuki, I. K. Wehus, J. Weller, B. Westbrook, J. Wilms, B. Winter, E. J. Wollack, N. Y. Yamasaki, T. Yoshida, J. Yumoto, A. Zacchei, M. Zannoni, A. Zonca
    Journal of Low Temperature Physics 211(5-6) 384-397 2022年12月2日  査読有り
  • E Allys, K Arnold, J Aumont, R Aurlien, S Azzoni, C Baccigalupi, A J Banday, R Banerji, R B Barreiro, N Bartolo, L Bautista, D Beck, S Beckman, M Bersanelli, F Boulanger, M Brilenkov, M Bucher, E Calabrese, P Campeti, A Carones, F J Casas, A Catalano, V Chan, K Cheung, Y Chinone, S E Clark, F Columbro, G D’Alessandro, P de Bernardis, T de Haan, E de  la Hoz, M De Petris, S Della Torre, P Diego-Palazuelos, M Dobbs, T Dotani, J M Duval, T Elleflot, H K Eriksen, J Errard, T Essinger-Hileman, F Finelli, R Flauger, C Franceschet, U Fuskeland, M Galloway, K Ganga, M Gerbino, M Gervasi, R T Génova-Santos, T Ghigna, S Giardiello, E Gjerløw, J Grain, F Grupp, A Gruppuso, J E Gudmundsson, N W Halverson, P Hargrave, T Hasebe, M Hasegawa, M Hazumi, S Henrot-Versillé, B Hensley, L T Hergt, D Herman, E Hivon, R A Hlozek, A L Hornsby, Y Hoshino, J Hubmayr, K Ichiki, T Iida, H Imada, H Ishino, G Jaehnig, N Katayama, A Kato, R Keskitalo, T Kisner, Y Kobayashi, A Kogut, K Kohri, E Komatsu, K Komatsu, K Konishi, N Krachmalnicoff, C L Kuo, L Lamagna, M Lattanzi, A T Lee, C Leloup, F Levrier, E Linder, G Luzzi, J Macias-Perez, T Maciaszek, B Maffei, D Maino, S Mandelli, E Martínez-González, S Masi, M Massa, S Matarrese, F T Matsuda, T Matsumura, L Mele, M Migliaccio, Y Minami, A Moggi, J Montgomery, L Montier, G Morgante, B Mot, Y Nagano, T Nagasaki, R Nagata, R Nakano, T Namikawa, F Nati, P Natoli, S Nerval, F Noviello, K Odagiri, S Oguri, H Ohsaki, L Pagano, A Paiella, D Paoletti, A Passerini, G Patanchon, F Piacentini, M Piat, G Polenta, D Poletti, T Prouvé, G Puglisi, D Rambaud, C Raum, S Realini, M Reinecke, M Remazeilles, A Ritacco, G Roudil, J A Rubino-Martin, M Russell, H Sakurai, Y Sakurai, M Sasaki, D Scott, Y Sekimoto, K Shinozaki, M Shiraishi, P Shirron, G Signorelli, F Spinella, S Stever, R Stompor, S Sugiyama, R M Sullivan, A Suzuki, T L Svalheim, E Switzer, R Takaku, H Takakura, Y Takase, A Tartari, Y Terao, J Thermeau, H Thommesen, K L Thompson, M Tomasi, M Tominaga, M Tristram, M Tsuji, M Tsujimoto, L Vacher, P Vielva, N Vittorio, W Wang, K Watanuki, I K Wehus, J Weller, B Westbrook, J Wilms, E J Wollack, J Yumoto, M Zannoni
    Progress of Theoretical and Experimental Physics 2023(4) 2022年11月21日  査読有り
    Abstract LiteBIRD the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2 μK-arcmin, with a typical angular resolution of 0.5○ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects. Subject Index LiteBIRD cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravitational waves, quantum gravity, space telescope
  • J. Hubmayr, P. A. R. Ade, A. Adler, E. Allys, D. Alonso, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. E. Austermann, S. Azzoni, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, N. Bartolo, S. Basak, E. Battistelli, L. Bautista, J. A. Beall, D. Beck, S. Beckman, K. Benabed, J. Bermejo-Ballesteros, M. Bersanelli, J. Bonis, J. Borrill, F. Bouchet, F. Boulanger, S. Bounissou, M. Brilenkov, M. L. Brown, M. Bucher, E. Calabrese, M. Calvo, P. Campeti, A. Carones, F. J. Casas, A. Catalano, A. Challinor, V. Chan, K. Cheung, Y. Chinone, C. Chiocchetta, S. E. Clark, L. Clermont, S. Clesse, J. Cliche, F. Columbro, J. A. Connors, A. Coppolecchia, W. Coulton, J. Cubas, A. Cukierman, D. Curtis, F. Cuttaia, G. D’Alessandro, K. Dachlythra, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, J. J. Daz Garca, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, D. Douillet, E. Doumayrou, L. Duband, A. Ducout, S. M. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, S. Farrens, F. Finelli, R. Flauger, K. Fleury-Frenette, C. Franceschet, U. Fuskeland, L. Galli, S. Galli, M. Galloway, K. Ganga, J. R. Gao, R. T. Genova-Santos, M. Georges, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, E. Gjerlw, R. Gonzlez Gonzles, M. L. Gradziel, J. Grain, L. Grandsire, F. Grupp, A. Gruppuso, J. E. Gudmundsson, N. W. Halverson, J. Hamilton, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versill, B. Hensley, D. Herman, D. Herranz, G. C. Hilton, E. Hivon, R. A. Hlozek, D. Hoang, A. L. Hornsby, Y. Hoshino, K. Ichiki, T. Iida, T. Ikemoto, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, M. Jones, T. Kaga, S. Kashima, N. Katayama, A. Kato, T. Kawasaki, R. Keskitalo, C. Kintziger, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, I. Kreykenbohm, C. L. Kuo, A. Kushino, L. Lamagna, J. V. Lanen, G. Laquaniello, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, E. Linder, M. J. Link, A. I. Lonappan, T. Louis, G. Luzzi, J. Macias-Perez, T. Maciaszek, B. Maffei, D. Maino, M. Maki, S. Mandelli, M. Maris, B. Marquet, E. Martnez-Gonzlez, F. A. Martire, S. Masi, M. Massa, M. Masuzawa, S. Matarrese, F. T. Matsuda, T. Matsumura, L. Mele, A. Mennella, M. Migliaccio, Y. Minami, K. Mitsuda, A. Moggi, M. Monelli, A. Monfardini, J. Montgomery, L. Montier, G. Morgante, B. Mot, Y. Murata, J. A. Murphy, M. Nagai, Y. Nagano, T. Nagasaki, R. Nagata, S. Nakamura, R. Nakano, T. Namikawa, F. Nati, P. Natoli, S. Nerval, N. Neto Godry Farias, T. Nishibori, H. Nishino, F. Noviello, G. C. O’Neil, C. O’Sullivan, K. Odagiri, H. Ochi, H. Ogawa, H. Ogawa, S. Oguri, H. Ohsaki, I. S. Ohta, N. Okada, L. Pagano, A. Paiella, D. Paoletti, G. Pascual Cisneros, A. Passerini, G. Patanchon, V. Pelgrim, J. Peloton, V. Pettorino, F. Piacentini, M. Piat, G. Piccirilli, F. Pinsard, G. Pisano, J. Plesseria, G. Polenta, D. Poletti, T. Prouv, G. Puglisi, D. Rambaud, C. Raum, S. Realini, M. Reinecke, C. D. Reintsema, M. Remazeilles, A. Ritacco, P. Rosier, G. Roudil, J. Rubino-Martin, M. Russell, H. Sakurai, Y. Sakurai, M. Sandri, M. Sasaki, G. Savini, D. Scott, J. Seibert, Y. Sekimoto, B. Sherwin, K. Shinozaki, M. Shiraishi, P. Shirron, A. Shitvov, G. Signorelli, G. Smecher, F. Spinella, J. Starck, S. Stever, R. Stompor, R. Sudiwala, S. Sugiyama, R. Sullivan, A. Suzuki, J. Suzuki, T. Suzuki, T. L. Svalheim, E. Switzer, R. Takaku, H. Takakura, S. Takakura, Y. Takase, Y. Takeda, A. Tartari, D. Tavagnacco, A. Taylor, E. Taylor, Y. Terao, L. Terenzi, J. Thermeau, H. Thommesen, K. L. Thompson, B. Thorne, T. Toda, M. Tomasi, M. Tominaga, N. Trappe, M. Tristram, M. Tsuji, M. Tsujimoto, C. Tucker, R. Ueki, J. N. Ullom, K. Umemori, L. Vacher, J. Van Lanen, G. Vermeulen, P. Vielva, F. Villa, M. R. Vissers, N. Vittorio, B. Wandelt, W. Wang, I. K. Wehus, J. Weller, B. Westbrook, G. Weymann-Despres, J. Wilms, B. Winter, E. J. Wollack, N. Y. Yamasaki, T. Yoshida, J. Yumoto, K. Watanuki, A. Zacchei, M. Zannoni, A. Zonca
    Journal of Low Temperature Physics 209(3-4) 396-408 2022年9月5日  査読有り
    Feedhorn- and orthomode transducer- (OMT) coupled transition edge sensor (TES) bolometers have been designed and micro-fabricated to meet the optical specifications of the LiteBIRD high frequency telescope (HFT) focal plane. We discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers. Results show well-matched passbands between orthogonal polarization channels and frequency centers within 3% of the design values. The optical efficiency of each frequency channel is conservatively reported to be within the range 0.64- 0.72, determined from the response to a cryogenic, temperature-controlled thermal source. These values are in good agreement with expectations and either exceed or are within 10% of the values used in the LiteBIRD sensitivity forecast. Lastly, we report a measurement of loss in Nb/SiNx/Nb microstrip at 100 mK and over the frequency range 200–350 GHz, which is comparable to values previously reported in the literature.
  • Hayato Takakura, Ryo Nakano, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Frederick T. Matsuda, Shugo Oguri
    Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 12180 2022年8月27日  筆頭著者
    Suppression of straylight is one of the challenges in the optical design of a wide-field-of-view telescope. It contaminates the weak target signal with radiation from strong sources at angles far from the observing direction. We evaluated the optical design of a crossed-Dragone telescope, the LiteBIRD Low-Frequency Telescope (LFT), which has 18 degrees x 9 degrees field of view. We measured a 1/4-scaled antenna of the LFT at accordingly scaled frequencies of 160-200 GHz (corresponding to 40-50 GHz for the full-scale LFT), for the feed at the center and the edges of the focal plane. To separate straylight components, we computed the time profiles of the aperture fields with similar to 0.1 ns resolution by inverse Fourier transformation of the measured frequency spectra and applied time gating to them. We identified far-sidelobe components in the time-gated antenna beam patterns whose arrival time and angular direction are consistent with straylight predicted by a ray-tracing simulation. The identified far-sidelobe components include straylight reduced but reflected inside the front hood and straylight with multiple reflections without intercepted by the front hood. Their intensities are less than the -56 dB level, which is the far-sidelobe knowledge requirement for the LFT.
  • P. Vielva, E. Martínez-González, F. J. Casas, T. Matsumura, S. Henrot-Versillé, E. Komatsu, J. Aumont, R. Aurlien, C. Baccigalupi, A. J. Banday, R. B. Barreiro, N. Bartolo, E. Calabrese, K. Cheung, F. Columbro, A. Coppolecchia, P. De Bernardis, T. De Haan, E. De La Hoz, M. De Petris, S. Della Torre, P. Diego-Palazuelos, H. K. Eriksen, J. Errard, F. Finelli, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, M. Gervasi, R. T. Génova-Santos, T. Ghigna, E. Gjerløw, A. Gruppuso, M. Hazumi, D. Herranz, E. Hivon, K. Kohri, L. Lamagna, C. Leloup, J. Macias-Perez, S. Masi, F. T. Matsuda, G. Morgante, R. Nakano, F. Nati, P. Natoli, S. Nerval, K. Odagiri, S. Oguri, L. Pagano, A. Paiella, D. Paoletti, F. Piacentini, G. Polenta, G. Puglisi, M. Remazeilles, A. Ritacco, J. A. Rubino-Martin, D. Scott, Y. Sekimoto, M. Shiraishi, G. Signorelli, H. Takakura, A. Tartari, K. L. Thompson, M. Tristram, L. Vacher, N. Vittorio, I. K. Wehus, M. Zannoni
    Journal of Cosmology and Astroparticle Physics 2022(4) 2022年4月  査読有り
    A methodology to provide the polarization angle requirements for different sets of detectors, at a given frequency of a CMB polarization experiment, is presented. The uncertainties in the polarization angle of each detector set are related to a given bias on the tensor-to-scalar ratio r parameter. The approach is grounded in using a linear combination of the detector sets to obtain the CMB polarization signal. In addition, assuming that the uncertainties on the polarization angle are in the small angle limit (lower than a few degrees), it is possible to derive analytic expressions to establish the requirements. The methodology also accounts for possible correlations among detectors, that may originate from the optics, wafers, etc. The approach is applied to the LiteBIRD space mission. We show that, for the most restrictive case (i.e., full correlation of the polarization angle systematics among detector sets), the requirements on the polarization angle uncertainties are of around 1 arcmin at the most sensitive frequency bands (i.e., ≈ 150 GHz) and of few tens of arcmin at the lowest (i.e., ≈ 40 GHz) and highest (i.e., ≈ 400 GHz) observational bands. Conversely, for the least restrictive case (i.e., no correlation of the polarization angle systematics among detector sets), the requirements are ≈ 5 times less restrictive than for the previous scenario. At the global and the telescope levels, polarization angle knowledge of a few arcmins is sufficient for correlated global systematic errors and can be relaxed by a factor of two for fully uncorrelated errors in detector polarization angle. The reported uncertainty levels are needed in order to have the bias on r due to systematics below the limit established by the LiteBIRD collaboration.
  • H. Sugai, P. A.R. Ade, Y. Akiba, D. Alonso, K. Arnold, J. Aumont, J. Austermann, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, S. Basak, J. Beall, S. Beckman, M. Bersanelli, J. Borrill, F. Boulanger, M. L. Brown, M. Bucher, A. Buzzelli, E. Calabrese, F. J. Casas, A. Challinor, V. Chan, Y. Chinone, J. F. Cliche, F. Columbro, A. Cukierman, D. Curtis, P. Danto, P. de Bernardis, T. de Haan, M. De Petris, C. Dickinson, M. Dobbs, T. Dotani, L. Duband, A. Ducout, S. Duff, A. Duivenvoorden, J. M. Duval, K. Ebisawa, T. Elleflot, H. Enokida, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, K. Ganga, J. R. Gao, R. Génova-Santos, T. Ghigna, A. Gomez, M. L. Gradziel, J. Grain, F. Grupp, A. Gruppuso, J. E. Gudmundsson, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versille, D. Herranz, C. Hill, G. Hilton, Y. Hirota, E. Hivon, R. Hlozek, D. T. Hoang, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, K. Ishimura, H. Ishino, G. C. Jaehnig, M. Jones, T. Kaga, S. Kashima, Y. Kataoka, N. Katayama, T. Kawasaki, R. Keskitalo, A. Kibayashi, T. Kikuchi, K. Kimura, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi
    Journal of Low Temperature Physics 199(3-4) 1107-1117 2020年5月1日  査読有り
    © 2020, The Author(s). Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
  • Takashi Hasebe, Tasuku Hayashi, Hayato Takakura, Yutaro Sekimoto, Kumi Ishikawa, Yoshinori Shohmitsu, Kazuhusa Noda, Satoshi Saeki, Yuichiro Ezoe, Tom Nitta
    Journal of Low Temperature Physics 199(1-2) 339-347 2020年4月  査読有り
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. To show the technical feasibility of high-frequency and broadband anti-reflection (AR) coating for silicon optics in millimeter wavelengths, we fabricated a prototype of the four-layer sub-wavelength structure (SWS) using a combination of deep reactive ion etching (DRIE) and dicing processes. We also fabricated a three-layer SWS using a multi-layer DRIE technique. The described processes allow to obtain physical prototypes that are close enough to those designed that their simulated reflectances are slightly worse than expected. The simulations of the obtained three- and four-layer prototype showed the averaged reflectances of 5.2 % at 150–450 GHz and 3.7 % at 100–450 GHz, while the designed SWSs showed 1.6 % and 2.0 %, respectively.
  • M. Hazumi, P. A.R. Ade, A. Adler, E. Allys, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A. J. Banday, R. Banjeri, R. B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman, J. Bermejo, P. De Bernardis, M. Bersanelli, J. Bonis, J. Borrill, F. Boulanger, S. Bounissou, M. Brilenkov, M. Brown, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F. J. Casas, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. F. Cliche, L. Colombo, F. Columbro, J. Cubas, A. Cukierman, D. Curtis, G. D'alessandro, N. Dachlythra, M. De Petris, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, J. R. Gao, R. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, E. Gjerløw, M. L. Gradziel, J. Grain, F. Grupp, A. Gruppuso, J. E. Gudmundsson, T. De Haan, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, S. Henrot-Versillé, D. Herman, D. Herranz, C. A. Hill, G. Hilton, Y. Hirota, E. Hivon, R. A. Hlozek, Y. Hoshino, E. De La Hoz, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, T. Kaga, S. Kashima, N. Katayama, A. Kato
    Proceedings of SPIE - The International Society for Optical Engineering 11443 2020年  
    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
  • L. Montier, B. Mot, P. De Bernardis, B. Maffei, G. Pisano, F. Columbro, J. E. Gudmundsson, S. Henrot-Versillé, L. Lamagna, J. Montgomery, T. Prouvé, M. Russell, G. Savini, S. Stever, K. L. Thompson, M. Tsujimoto, C. Tucker, B. Westbrook, P. A.R. Ade, A. Adler, E. Allys, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman, J. Bermejo, M. Bersanelli, J. Bonis, J. Borrill, F. Boulanger, S. Bounissou, M. Brilenkov, M. Brown, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F. J. Casas, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. F. Cliche, L. Colombo, J. Cubas, A. Cukierman, D. Curtis, G. D'alessandro, N. Dachlythra, M. De Petris, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, J. R. Gao, R. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, E. Gjerløw, M. L. Gradziel, J. Grain, F. Grupp, A. Gruppuso, T. De Haan, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, D. Herman, D. Herranz, C. A. Hill, G. Hilton, Y. Hirota, E. Hivon
    Proceedings of SPIE - The International Society for Optical Engineering 11443 2020年  
    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD.
  • Y. Sekimoto, P. A.R. Ade, A. Adler, E. Allys, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman, J. Bermejo, P. De Bernardis, M. Bersanelli, J. Bonis, J. Borrill, F. Boulanger, S. Bounissou, M. Brilenkov, M. Brown, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F. J. Casas, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. F. Cliche, L. Colombo, F. Columbro, J. Cubas, A. Cukierman, D. Curtis, G. D'Alessandro, N. Dachlythra, M. De Petris, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, J. R. Gao, R. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, E. Gjerløw, M. L. Gradziel, J. Grain, F. Grupp, A. Gruppuso, J. E. Gudmundsson, T. De Haan, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versille, D. Herman, D. Herranz, C. A. Hill, G. Hilton, Y. Hirota, E. Hivon, R. A. Hlozek, Y. Hoshino, E. De La Hoz, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, T. Kaga, S. Kashima, N. Katayama
    Proceedings of SPIE - The International Society for Optical Engineering 11453 2020年  
    LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of-56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT: 34-161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90a-▪ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
  • Tom Nitta, Makoto Nagai, Yosuke Murayama, Ryotaro Hikawa, Ryuji Suzuki, Yutaro Sekimoto, Hayato Takakura, Takashi Hasebe, Kazufusa Noda, Satoshi Saeki, Hiroshi Matsuo, Nario Kuno, Naomasa Nakai
    Proceedings of SPIE - The International Society for Optical Engineering 11453 2020年  
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. We are developing a 100-GHz band 109-pixel MKID camera for the Nobeyama 45-m telescope. The camera optics contains plano-convex silicon (Si) lenses with 300-and 154-mm diameters located at the 4-K and 1-K stages, and a vacuum window of 320-mm diameter. Antireflective subwavelength structures (SWSs) for the Si lenses and the vacuum window were designed to reduce surface reflection. Cyclo olefin polymer (COP) was chosen as the base material for vacuum window as the dielectric loss is comparable with high-density polyethylene and it is easy to fabricate. Antireflective SWSs optimized for 100-GHz band were simulated using ANSYS HFSS. A one-layer rectangular pillar was designed for a Si lens of 300-mm diameter and a 320-mm diameter COP window to examine the fabrication process in large areas. For 154-mm diameter Si lens, a 1.2-mm depth tapered structure was used to obtain broadband characteristics. These designed structures were fabricated on both sides using a three-Axis numerically-controlled machine. An end mill and a metal-bonded dicing blade were used for cutting the COP and Si, respectively. W-band vector network analyzer was used for S-parameter measurements of the SWS formed flat surface at an ambient temperature. Average surface reflectance of Si lenses and transmittance of the COP window in the 90-110 GHz range were found at approximately 1% and 98%, respectively.
  • Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Shingo Kashima, Hiroaki Imada, Takashi Hasebe, Toru Kaga, Yoichi Takeda, Norio Okada
    IEEE Transactions on Terahertz Science and Technology 9(6) 598-605 2019年11月  査読有り筆頭著者
    © 2019 IEEE. Polarization of the cosmic microwave background (CMB) has crucial information on the inflationary universe. To detect these signals, it is necessary to suppress far sidelobes of a telescope, which contaminate the CMB signals with strong foreground radiation, such as the Galactic plane. LiteBIRD is the only funded CMB observation satellite for the 2020s, and the low frequency telescope (LFT; 34-161 GHz) is one of its telescopes. We measured near-field antenna patterns of the LFT using its 1/4-scaled model and examined far sidelobes up to 60° from the peaks. To cover the 20° field of view of the LFT, we investigated the antenna patterns at the edges of the focal plane as well as at the center. The measurement frequencies were 140-220 GHz, which correspond to the lowest bands (35-55 GHz) of the full-scale LFT. The measurements were consistent with the simulated far-sidelobe patterns at least -50 dB level, and showed that far sidelobes for two orthogonal polarization directions are consistent with each other down to -40 dB level. We also measured the cross-polarization patterns, and their peak level was less than -20 dB.
  • Y. Sekimoto, P. Ade, K. Arnold, J. Aumont, J. Austermann, C. Baccigalupi, A. Banday, R. Banerji, S. Basak, S. Beckman, M. Bersanelli, J. Borrill, F. Boulanger, M. L. Brown, M. Bucher, E. Calabrese, F. J. Casas, A. Challinor, Y. Chinone, F. Columbro, A. Cukierman, D. Curtis, P. De Bernardis, M. De Petris, M. Dobbs, T. Dotani, L. Duband, J. M. Duval, A. Ducout, K. Ebisawa, T. Elleot, H. Eriksen, J. Errard, R. Flauger, C. Franceschet, U. Fuskeland, K. Ganga, R. J. Gao, T. Ghigna, J. Grain, A. Gruppuso, N. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versille, C. Hill, Y. Hirota, E. Hivon, T. D. Hoang, J. Hubmayr, K. Ichiki, H. Imada, H. Ishino, G. Jaehnig, H. Kanai, S. Kashima, Y. Kataoka, N. Katayama, T. Kawasaki, R. Keskitalo, A. Kibayashi, T. Kikuchi, K. Kimura, T. Kisner, Y. Kobayashi, N. Kogiso, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, L. C. Kuo, N. Kurinsky, A. Kushino, L. Lamagna, T. A. Lee, E. Linder, B. Maffei, M. Maki, A. Mangilli, E. Martinez-Gonzalez, S. Masi, T. Matsumura, A. Mennella, Y. Minami, K. Mistuda, D. Molinari, L. Montier, G. Morgante, B. Mot, Y. Murata, A. Murphy, M. Nagai, R. Nagata, S. Nakamura, T. Namikawa, P. Natoli
    Proceedings of SPIE - The International Society for Optical Engineering 10698 2018年  
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. LiteBIRD is a candidate for JAXA's strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 μK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper.

主要なMISC

 8

主要な講演・口頭発表等

 8

共同研究・競争的資金等の研究課題

 3