研究者業績

鈴木 寛大

スズキ ヒロマサ  (Hiromasa Suzuki)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 特任助教

連絡先
hiromasa050701gmail.com
研究者番号
50915402
ORCID ID
 https://orcid.org/0000-0002-8152-6172
J-GLOBAL ID
202301003397839297
researchmap会員ID
R000055343

外部リンク

高エネルギー宇宙、特に宇宙線(宇宙の放射線)、超新星が生む高温プラズマ、中性子星などの観測をしています。そのための装置開発も行います。


委員歴

 2

論文

 52
  • Hirofumi Noda, Mio Aoyagi, Koji Mori, Hiroshi Tomida, Hiroshi Nakajima, Takaaki Tanaka, Hiromasa Suzuki, Hiroshi Murakami, Hiroyuki Uchida, Takeshi Go Tsuru, Keitaro Miyazaki, Kohei Kusunoki, Yoshiaki Kanemaru, Yuma Aoki, Kumiko K. Nobukawa, Masayoshi Nobukawa, Kohei Shima, Marina Yoshimoto, Kazunori Asakura, Hironori Matsumoto, Tomokage Yoneyama, Shogo B. Kobayashi, Kouichi Hagino, Hideki Uchiyama, Kiyoshi Hayashida
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 226-226 2024年8月21日  
  • Keisuke Tamura, Takayuki Hayashi, Rozenn Boissay-Malaquin, Takashi Okajima, Toshiki Sato, Megan E. Eckart, Maurice A. Leutenegger, Tahir Yaqoob, Koji Mori, Manabu Ishida, Yoshitomo Maeda, Hiroshi Tomida, Hiroshi Nakajima, Hirofumi Noda, Hiroyuki Uchida, Hiromasa Suzuki, Shogo B. Kobayashi, Tomokage Yoneyama, Kouichi Hagino, Kumiko K. Nobukawa, Takaaki Tanaka, Hiroshi Murakami, Hideki Uchiyama, Masayoshi Nobukawa, Tessei Yoshida, Hironori Matsumoto, Takeshi Go Tsuru, Makoto Yamauchi, Isamu Hatsukade, Hirokazu Odaka, Takayoshi Kohmura, Kazutaka Yamaoka, Yoshiaki Kanemaru, Junko S. Hiraga, Tadayasu Dotani, Masanobu Ozaki, Hiroshi Tsunemi, Keitaro Miyazaki, Kohei Kusunoki, Yoshinori Otsuka, Haruhiko Yokosu, Wakana Yonematsu, Kazuhiro Ichikawa, Hanako Nakano, Reo Takemoto, Tsukasa Matsushima, Yoh Asahina, Masahiro Fukuda, Marina Yoshimoto, Kohei Shima, Mio Aoyagi, Yuma Aoki, Yamato Ito, Daiki Aoki, Kaito Fujisawa, Yasuyuki Shimizu, Mayu Higuchi, Kiyoshi Hayashida, Aurora Simionescud, Eric Miller, Laura Brenneman
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 59-59 2024年8月21日  
  • Takatoshi Ko, Hiromasa Suzuki, Kazumi Kashiyama, Hiroyuki Uchida, Takaaki Tanaka, Daichi Tsuna, Kotaro Fujisawa, Aya Bamba, Toshikazu Shigeyama
    The Astrophysical Journal 2024年7月1日  
  • Hiroumi Matsuhashi, Kouichi Hagino, Aya Bamba, Ayaki Takeda, Masataka Yukumoto, Koji Mori, Yusuke Nishioka, Takeshi Go Tsuru, Mizuki Uenomachi, Tomonori Ikeda, Masamune Matsuda, Takuto Narita, Hiromasa Suzuki, Takaaki Tanaka, Ikuo Kurachi, Takayoshi Kohmura, Yusuke Uchida, Yasuo Arai, Shoji Kawahito
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1064 169426-169426 2024年7月  
  • F. Aharonian, F. Ait Benkhali, J. Aschersleben, H. Ashkar, M. Backes, A. Baktash, V. Barbosa Martins, J. Barnard, R. Batzofin, Y. Becherini, D. Berge, K. Bernlöhr, B. Bi, M. Böttcher, C. Boisson, J. Bolmont, M. de Bony de Lavergne, J. Borowska, F. Bradascio, M. Breuhaus, R. Brose, A. Brown, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, T. Bylund, S. Caroff, S. Casanova, R. Cecil, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, J. Chibueze, O. Chibueze, G. Cotter, J. Damascene Mbarubucyeye, I. D. Davids, J. Djuvsland, A. Dmytriiev, V. Doroshenko, K. Egberts, S. Einecke, J. P. Ernenwein, G. Fontaine, M. Füßling, S. Funk, S. Gabici, S. Ghafourizadeh, G. Giavitto, D. Glawion, J. F. Glicenstein, J. Glombitza, P. Goswami, G. Grolleron, L. Haerer, J. A. Hinton, T. L. Holch, M. Holler, D. Horns, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzyński, R. Khatoon, B. Khélifi, W. Kluźniak, N. Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, F. Leitl, A. Lemière, J. P. Lenain, F. Leuschner, A. Luashvili, J. Mackey, R. Marx, A. Mehta, M. Meyer, A. Mitchell, R. Moderski, A. Montanari, E. Moulin, M. de Naurois, J. Niemiec, P. O’Brien, S. Ohm, L. Olivera-Nieto, E. de Ona Wilhelmi, M. Ostrowski, S. Panny, R. D. Parsons, S. Pita, D. A. Prokhorov
    Astronomy and Astrophysics 683 2024年3月1日  
    Most γ-ray detected active galactic nuclei are blazars with one of their relativistic jets pointing towards the Earth. Only a few objects belong to the class of radio galaxies or misaligned blazars. Here, we investigate the nature of the object PKS 0625−354, its γ-ray flux and spectral variability and its broad-band spectral emission with observations from H.E.S.S., Fermi-LAT, Swift-XRT, and UVOT taken in November 2018. The H.E.S.S. light curve above 200 GeV shows an outburst in the first night of observations followed by a declining flux with a halving time scale of 5.9 h. The γγ-opacity constrains the upper limit of the angle between the jet and the line of sight to ∼10◦. The broad-band spectral energy distribution shows two humps and can be well fitted with a single-zone synchrotron self Compton emission model. We conclude that PKS 0625−354, as an object showing clear features of both blazars and radio galaxies, can be classified as an intermediate active galactic nuclei. Multi-wavelength studies of such intermediate objects exhibiting features of both blazars and radio galaxies are sparse but crucial for the understanding of the broad-band emission of γ-ray detected active galactic nuclei in general.
  • F. Aharonian, F. Ait Benkhali, J. Aschersleben, H. Ashkar, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, K. Bernlöhr, B. Bi, M. Böttcher, C. Boisson, J. Bolmont, M. de Bony de Lavergne, J. Borowska, F. Bradascio, M. Breuhaus, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, T. Bylund, F. Cangemi, S. Caroff, S. Casanova, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, O. Chibueze, G. Cotter, J. Damascene Mbarubucyeye, A. Djannati-Ataï, A. Dmytriiev, K. Egberts, J. P. Ernenwein, K. Feijen, A. Fiasson, G. Fichet de Clairfontaine, G. Fontaine, M. Füßling, S. Funk, S. Gabici, Y. A. Gallant, S. Ghafourizadeh, G. Giavitto, L. Giunti, D. Glawion, J. F. Glicenstein, P. Goswami, G. Grolleron, M. H. Grondin, L. Haerer, M. Haupt, J. A. Hinton, W. Hofmann, T. L. Holch, M. Holler, D. Horns, Z. Huang, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. KatarzyÅ„ski, B. Khélifi, S. Klepser, W. Kluźniak, Nu Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, A. Lemière, M. Lemoine-Goumard, J. P. Lenain, F. Leuschner, T. Lohse, A. Luashvili, I. Lypova, J. Mackey, D. Malyshev, D. Malyshev, V. Marandon, P. Marchegiani, A. Marcowith, P. Marinos, G. Martí-Devesa, R. Marx, G. Maurin, M. Meyer, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin
    Nature Astronomy 8(1) 145 2024年1月  
    Correction to: Nature Astronomy, published online 5 October 2023. In the version of the article initially published, R. Zanin, M. Kerr, S. Johnston, R. M. Shannon and D. A. Smith mistakenly appeared in the main author list but are now instead listed as members of The H.E.S.S. Collaboration et al. in the HTML and PDF versions of the article.
  • F. Aharonian, F. Ait Benkhali, J. Aschersleben, H. Ashkar, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, K. Bernlöhr, B. Bi, M. Böttcher, C. Boisson, J. Bolmont, M. de Bony de Lavergne, J. Borowska, F. Bradascio, M. Breuhaus, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, T. Bylund, F. Cangemi, S. Caroff, S. Casanova, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, O. Chibueze, G. Cotter, J. Damascene Mbarubucyeye, A. Djannati-Ataï, A. Dmytriiev, K. Egberts, J. P. Ernenwein, K. Feijen, A. Fiasson, G. Fichet de Clairfontaine, G. Fontaine, M. Füßling, S. Funk, S. Gabici, Y. A. Gallant, S. Ghafourizadeh, G. Giavitto, L. Giunti, D. Glawion, J. F. Glicenstein, P. Goswami, G. Grolleron, M. H. Grondin, L. Haerer, M. Haupt, J. A. Hinton, W. Hofmann, T. L. Holch, M. Holler, D. Horns, Z. Huang, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. KatarzyÅ„ski, B. Khélifi, S. Klepser, W. Kluźniak, Nu Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, A. Lemière, M. Lemoine-Goumard, J. P. Lenain, F. Leuschner, T. Lohse, A. Luashvili, I. Lypova, J. Mackey, D. Malyshev, D. Malyshev, V. Marandon, P. Marchegiani, A. Marcowith, P. Marinos, G. Martí-Devesa, R. Marx, G. Maurin, M. Meyer, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin
    Nature Astronomy 7(11) 1341-1350 2023年11月  
    Gamma-ray observations have established energetic isolated pulsars as outstanding particle accelerators and antimatter factories. However, many questions are still open regarding the acceleration and radiation processes involved, as well as the locations where they occur. The radiation spectra of all gamma-ray pulsars observed to date show strong cutoffs or a break above energies of a few gigaelectronvolts. Using the High Energy Stereoscopic System’s Cherenkov telescopes, we discovered a radiation component from the Vela pulsar which emerges beyond this generic cutoff and extends up to energies of at least 20 teraelectronvolts. This is an order of magnitude larger than in the case of the Crab pulsar, the only other pulsar detected in the teraelectronvolt energy range. Our results challenge the state-of-the-art models for the high-energy emission of pulsars. Furthermore, they pave the way for investigating other pulsars through their multiteraelectronvolt emission, thereby imposing additional constraints on the acceleration and emission processes in their extreme energy limit.
  • H. Sano, Y. Yamane, J. Th van Loon, K. Furuya, Y. Fukui, R. Z.E. Alsaberi, A. Bamba, R. Enokiya, M. D. Filipović, R. Indebetouw, T. Inoue, A. Kawamura, M. Lakićević, C. J. Law, N. Mizuno, T. Murase, T. Onishi, S. Park, P. P. Plucinsky, J. Rho, A. M.S. Richards, G. Rowell, M. Sasaki, J. Seok, P. Sharda, L. Staveley-Smith, H. Suzuki, T. Temim, K. Tokuda, K. Tsuge, K. Tachihara
    Astrophysical Journal 958(1) 2023年11月1日  
    We present the first compelling evidence of shock-heated molecular clouds associated with the supernova remnant (SNR) N49 in the Large Magellanic Cloud (LMC). Using 12CO(J = 2-1, 3-2) and 13CO(J = 2-1) line emission data taken with the Atacama Large Millimeter/Submillimeter Array, we derived the H2 number density and kinetic temperature of eight 13CO-detected clouds using the large velocity gradient approximation at a resolution of 3.″5 (∼0.8 pc at the LMC distance). The physical properties of the clouds are divided into two categories: three of them near the shock front show the highest temperatures of ∼50 K with densities of ∼500-700 cm−3, while other clouds slightly distant from the SNR have moderate temperatures of ∼20 K with densities of ∼800-1300 cm−3. The former clouds were heated by supernova shocks, but the latter were dominantly affected by the cosmic-ray heating. These findings are consistent with the efficient production of X-ray recombining plasma in N49 due to thermal conduction between the cold clouds and hot plasma. We also find that the gas pressure is roughly constant except for the three shock-engulfed clouds inside or on the SNR shell, suggesting that almost no clouds have evaporated within the short SNR age of ∼4800 yr. This result is compatible with the shock-interaction model with dense and clumpy clouds inside a low-density wind bubble.
  • Hiromasa Suzuki, Takaaki Tanaka, Tsuyoshi Inoue, Hiroyuki Uchida, Takuto Narita
    The Astrophysical Journal 2023年11月1日  
  • A. Acharyya, C. B. Adams, A. Archer, P. Bangale, J. T. Bartkoske, P. Batista, W. Benbow, A. Brill, J. H. Buckley, J. L. Christiansen, A. J. Chromey, M. Errando, A. Falcone, Q. Feng, G. M. Foote, L. Fortson, A. Furniss, G. Gallagher, W. Hanlon, D. Hanna, O. Hervet, C. E. Hinrichs, J. Hoang, J. Holder, T. B. Humensky, W. Jin, P. Kaaret, M. Kertzman, M. Kherlakian, D. Kieda, T. K. Kleiner, N. Korzoun, S. Kumar, M. J. Lang, M. Lundy, G. Maier, C. E. McGrath, M. J. Millard, J. Millis, C. L. Mooney, P. Moriarty, R. Mukherjee, S. O'Brien, R. A. Ong, M. Pohl, E. Pueschel, J. Quinn, K. Ragan, P. T. Reynolds, D. Ribeiro, E. Roache, I. Sadeh, A. C. Sadun, L. Saha, M. Santander, G. H. Sembroski, R. Shang, M. Splettstoesser, A. Kaushik Talluri, J. V. Tucci, V. V. Vassiliev, A. Weinstein, D. A. Williams, S. L. Wong, J. Woo, F. Aharonian, J. Aschersleben, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, K. Bernlöhr, B. Bi, M. Böttcher, C. Boisson, J. Bolmont, M. De Bony De Lavergne, J. Borowska, M. Bouyahiaoui, F. Bradascio, M. Breuhaus, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, S. Caroff, S. Casanova, R. Cecil, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, J. Chibueze, O. Chibueze, G. Cotter, S. Dai, J. Damascene Mbarubucyeye
    Astrophysical Journal 954(1) 2023年9月1日  
    We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2.°2 away from the best-fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high-flux state in the optical, ultraviolet, X-ray, and GeV 3-ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the 3-ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and 3-ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed 3-ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power.
  • F. Aharonian, F. Ait Benkhali, J. Aschersleben, H. Ashkar, M. Backes, V. Barbosa Martins, J. Barnard, R. Batzofin, Y. Becherini, D. Berge, K. Bernlöhr, B. Bi, M. de Bony de Lavergne, M. Böttcher, C. Boisson, J. Bolmont, J. Borowska, M. Bouyahiaoui, F. Bradascio, M. Breuhaus, R. Brose, A. M. Brown, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, S. Caroff, S. Casanova, R. Cecil, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, J. Chibueze, O. Chibueze, G. Cotter, J. Damascene Mbarubucyeye, I. D. Davids, A. Djannati-Ataï, A. Dmytriiev, V. Doroshenko, K. Egberts, S. Einecke, J. P. Ernenwein, S. Fegan, G. Fontaine, M. Füßling, S. Funk, S. Gabici, S. Ghafourizadeh, G. Giavitto, D. Glawion, J. F. Glicenstein, P. Goswami, G. Grolleron, L. Haerer, W. Hofmann, T. L. Holch, M. Holler, D. Horns, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzyński, R. Khatoon, B. Khélifi, W. Kluźniak, Nu Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, F. Leitl, A. Lemière, J. P. Lenain, F. Leuschner, A. Luashvili, J. Mackey, V. Marandon, P. Marchegiani, G. Martí-Devesa, R. Marx, A. Mehta, M. Meyer, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin, M. de Naurois, J. Niemiec, A. Priyana Noel, P. O’Brien, S. Ohm, L. Olivera-Nieto, E. de Ona Wilhelmi, M. Ostrowski
    Astrophysical Journal Letters 952(2) 2023年8月1日  
    In 2021 July, PKS 1510−089 exhibited a significant flux drop in the high-energy γ-ray (by a factor 10) and optical (by a factor 5) bands and remained in this low state throughout 2022. Similarly, the optical polarization in the source vanished, resulting in the optical spectrum being fully explained through the steady flux of the accretion disk and the broad-line region. Unlike the aforementioned bands, the very-high-energy γ-ray and X-ray fluxes did not exhibit a significant flux drop from year to year. This suggests that the steady-state very-high-energy γ-ray and X-ray fluxes originate from a different emission region than the vanished parts of the high-energy γ-ray and optical jet fluxes. The latter component has disappeared through either a swing of the jet away from the line of sight or a significant drop in the photon production efficiency of the jet close to the black hole. Either change could become visible in high-resolution radio images.
  • F. Aharonian, F. Ait Benkhali, C. Arcaro, J. Aschersleben, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, K. Bernlöhr, B. Bi, M. Böttcher, C. Boisson, J. Bolmont, J. Borowska, F. Bradascio, M. Breuhaus, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, T. Bylund, S. Caroff, S. Casanova, R. Cecil, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, J. Chibueze, O. Chibueze, G. Cotter, J. Damascene Mbarubucyeye, A. Djannati-Ataï, K. Egberts, J. P. Ernenwein, G. Fichet De Clairfontaine, M. Filipovic, G. Fontaine, M. Füßling, S. Funk, S. Gabici, S. Ghafourizadeh, G. Giavitto, D. Glawion, J. F. Glicenstein, P. Goswami, G. Grolleron, M. H. Grondin, L. Haerer, M. Haupt, G. Hermann, J. A. Hinton, T. L. Holch, D. Horns, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzyński, R. Khatoon, B. Khélifi, W. Kluåºniak, Nu Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, F. Leitl, A. Lemière, M. Lemoine-Goumard, J. P. Lenain, F. Leuschner, T. Lohse, A. Luashvili, I. Lypova, J. MacKey, D. Malyshev, D. Malyshev, V. Marandon, P. Marchegiani, A. Marcowith, P. Marinos, G. Martí-Devesa, R. Marx, M. Meyer, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin, J. Muller, K. Nakashima, M. De Naurois, J. Niemiec, A. Priyana Noel, P. O'Brien
    Astronomy and Astrophysics 675 2023年7月1日  
    The origin of the gamma-ray emission from M 87 is currently a matter of debate. This work aims to localize the very high-energy (VHE; 100 GeV - 100 TeV) gamma-ray emission from M 87 and probe a potential extended hadronic emission component in the inner Virgo Cluster. The search for a steady and extended gamma-ray signal around M 87 can constrain the cosmic-ray energy density and the pressure exerted by the cosmic rays onto the intracluster medium and allow us to investigate the role of cosmic rays in the active galactic nucleus feedback as a heating mechanism in the Virgo Cluster. The High Energy Stereoscopic System (H.E.S.S.) telescopes are sensitive to VHE gamma rays and have been used to observe M 87 since 2004. We utilized a Bayesian block analysis to identify M 87 emission states with H.E.S.S. observations from 2004 to 2021, dividing them into low, intermediate, and high states. Because of the causality argument, an extended (≳1 kpc) signal is allowed only in steady emission states. Hence, we fitted the morphology of the 120 h low-state data and find no significant gamma-ray extension. Therefore, we derive for the low state an upper limit of 58′ (corresponding to ≈4.6 kpc) in the extension of a single-component morphological model described by a rotationally symmetric 2D Gaussian model at the 99.7% confidence level. Our results exclude the radio lobes (≈30 kpc) as the principal component of the VHE gamma-ray emission from the low state of M 87. The gamma-ray emission is compatible with a single emission region at the radio core of M 87. These results, with the help of two multiple-component models, constrain the maximum cosmic-ray to thermal pressure ratio to XCR, max.≲0.32 and the total energy in cosmic-ray protons to UCR ≲ 5×1058 erg in the inner 20 kpc of the Virgo Cluster for an assumed cosmic-ray proton power-law distribution in momentum with spectral index αp=2.1.
  • F. Aharonian, J. Aschersleben, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, B. Bi, M. Bouyahiaoui, M. Breuhaus, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, T. Bylund, S. Caroff, S. Casanova, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, J. Chibueze, O. Chibueze, G. Cotter, M. De Bony, K. Egberts, J. P. Ernenwein, G. Fichet De Clairfontaine, M. Filipovic, G. Fontaine, M. Fussling, S. Funk, S. Gabici, S. Ghafourizadeh, G. Giavitto, D. Glawion, J. F. Glicenstein, P. Goswami, M. H. Grondin, L. Haerer, T. L. Holch, M. Holler, D. Horns, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzyński, R. Khatoon, B. Khélifi, W. Kluźniak, Nu Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, F. Leitl, A. Lemière, J. P. Lenain, F. Leuschner, T. Lohse, A. Luashvili, I. Lypova, J. Mackey, D. Malyshev, D. Malyshev, V. Marandon, P. Marchegiani, A. Marcowith, G. Martí-Devesa, R. Marx, M. Meyer, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin, J. Muller, T. Murach, K. Nakashima, J. Niemiec, S. Ohm, L. Olivera-Nieto, E. De Ona Wilhelmi, S. Panny, M. Panter, R. D. Parsons, G. Peron, D. A. Prokhorov, H. Prokoph, G. Puhlhofer, M. Punch, A. Quirrenbach, P. Reichherzer, A. Reimer, O. Reimer, B. Reville
    Astrophysical Journal Letters 950(2) 2023年6月1日  
    Magnetic fields in galaxies and galaxy clusters are believed to be the result of the amplification of intergalactic seed fields during the formation of large-scale structures in the universe. However, the origin, strength, and morphology of this intergalactic magnetic field (IGMF) remain unknown. Lower limits on (or indirect detection of) the IGMF can be obtained from observations of high-energy gamma rays from distant blazars. Gamma rays interact with the extragalactic background light to produce electron-positron pairs, which can subsequently initiate electromagnetic cascades. The gamma-ray signature of the cascade depends on the IGMF since it deflects the pairs. Here we report on a new search for this cascade emission using a combined data set from the Fermi Large Area Telescope and the High Energy Stereoscopic System. Using state-of-The-Art Monte Carlo predictions for the cascade signal, our results place a lower limit on the IGMF of B > 7.1 × 10-16 G for a coherence length of 1 Mpc even when blazar duty cycles as short as 10 yr are assumed. This improves on previous lower limits by a factor of 2. For longer duty cycles of 104 (107) yr, IGMF strengths below 1.8 × 10-14 G (3.9 × 10-14 G) are excluded, which rules out specific models for IGMF generation in the early universe.
  • F. Aharonian, F. Ait Benkhali, J. Aschersleben, H. Ashkar, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, K. Bernlöhr, B. Bi, M. Böttcher, C. Boisson, J. Bolmont, J. Borowska, M. Bouyahiaoui, F. Bradascio, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, F. Cangemi, S. Caroff, S. Casanova, J. Celic, M. Cerruti, P. Chambery, T. Chand, S. Chandra, A. Chen, J. Chibueze, O. Chibueze, G. Cotter, J. Damascene Mbarubucyeye, J. Devin, A. Djannati-Ataï, A. Dmytriiev, K. Egberts, S. Einecke, J. P. Ernenwein, K. Feijen, G. Fichet De Clairfontaine, M. Filipovic, G. Fontaine, M. Fübling, S. Funk, S. Gabici, Y. A. Gallant, S. Ghafourizadeh, G. Giavitto, L. Giunti, D. Glawion, J. F. Glicenstein, P. Goswami, G. Grolleron, M. H. Grondin, L. Haerer, M. Haupt, G. Hermann, J. A. Hinton, W. Hofmann, T. L. Holch, M. Holler, D. Horns, Zhiqiu Huang, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzynski, B. Khélifi, W. Kluåºniak, Nu Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, F. Leitl, A. Lemière, M. Lemoine-Goumard, J. P. Lenain, F. Leuschner, T. Lohse, A. Luashvili, I. Lypova, J. Mackey, D. Malyshev, V. Marandon, P. Marchegiani, A. Marcowith, P. Marinos, G. Martí-Devesa, R. Marx, G. Maurin, P. J. Meintjes, M. Meyer, A. Mitchell, R. Moderski
    Astronomy and Astrophysics 673 2023年5月1日  
    Geminga is an enigmatic radio-quiet γ-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy γ-ray emission around the pulsar was discovered by Milagro and later confirmed by HAWC, which are both water Cherenkov detector-based experiments. However, evidence for the Geminga pulsar wind nebula in gamma rays has long evaded detection by imaging atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The detection of γ-ray emission on angular scales ≳2° poses a considerable challenge for the background estimation in IACT data analysis. With recent developments in understanding the complementary background estimation techniques of water Cherenkov and atmospheric Cherenkov instruments, the H.E.S.S. IACT array can now confirm the detection of highly extended γ-ray emission around the Geminga pulsar with a radius of at least 3° in the energy range 0.5-40 TeV. We find no indications for statistically significant asymmetries or energy-dependent morphology. A flux normalisation of (2.8 ± 0.7)×10-12 cm-2 s-1 TeV-1 at 1 TeV is obtained within a 1° radius region around the pulsar. To investigate the particle transport within the halo of energetic leptons around the pulsar, we fitted an electron diffusion model to the data. The normalisation of the diffusion coefficient obtained of D0 = 7.6-1.2+1.5×1027 cm2 s-1, at an electron energy of 100 TeV, is compatible with values previously reported for the pulsar halo around Geminga, which is considerably below the Galactic average.
  • F. Aharonian, F. Ait Benkhali, J. Aschersleben, M. Böttcher, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, B. Bi, C. Boisson, J. Bolmont, M. De Bony De Lavergne, J. Borowska, F. Bradascio, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, S. Caroff, S. Casanova, J. Celic, M. Cerruti, T. Chand, A. Chen, O. Chibueze, G. Cotter, J. Damascene Mbarubucyeye, A. Djannati-Ataï, K. Egberts, C. Van Eldik, J. P. Ernenwein, M. Füßling, A. Fiasson, G. Fichet De Clairfontaine, G. Fontaine, S. Gabici, S. Ghafourizadeh, G. Giavitto, D. Glawion, J. F. Glicenstein, G. Grolleron, M. H. Grondin, L. Haerer, M. Haupt, J. A. Hinton, W. Hofmann, M. Holler, D. Horns, Z. Q. Huang, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzyński, B. Khélifi, S. Klepser, W. Kluźniak, N. Komin, K. Kosack, D. Kostunin, T. L. Holch, R. G. Lang, S. Le Stum, F. Leitl, A. Lemière, J. P. Lenain, F. Leuschner, T. Lohse, A. Luashvili, I. Lypova, J. Mackey, D. Malyshev, V. Marandon, P. Marchegiani, P. Marinos, G. Martí-Devesa, R. Marx, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin, J. Muller, K. Nakashima, M. De Naurois, J. Niemiec, P. O'Brien, S. Ohm, L. Olivera-Nieto, E. De Ona Wilhelmi, M. Ostrowski, G. Pühlhofer, S. Panny, M. Panter, R. D. Parsons, G. Peron, A. Priyana Noel
    Journal of Cosmology and Astroparticle Physics 2023(4) 2023年4月1日  
    Primordial Black Holes (PBHs) are hypothetical black holes predicted to have been formed from density fluctuations in the early Universe. PBHs with an initial mass around 1014-1015 g are expected to end their evaporation at present times in a burst of particles and very-high-energy (VHE) gamma rays. Those gamma rays may be detectable by the High Energy Stereoscopic System (H.E.S.S.), an array of imaging atmospheric Cherenkov telescopes. This paper reports on the search for evaporation bursts of VHE gamma rays with H.E.S.S., ranging from 10 to 120 seconds, as expected from the final stage of PBH evaporation and using a total of 4816 hours of observations. The most constraining upper limit on the burst rate of local PBHs is 2000 pc-3 yr-1 for a burst interval of 120 seconds, at the 95% confidence level. The implication of these measurements for PBH dark matter are also discussed.
  • F. Aharonian, F. Ait Benkhali, J. Aschersleben, H. Ashkar, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, M. Boettcher, C. Boisson, J. Bolmont, J. Borowska, M. Bouyahiaoui, F. Bradascio, M. Breuhaus, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, T. Bylund, S. Caroff, S. Casanova, J. Celic, M. Cerruti, P. Chambery, T. Chand, A. Chen, J. Chibueze, O. Chibueze, J. Damascene Mbarubucyeye, A. Djannati-Atai, A. Dmytriiev, S. Einecke, J. -p. Ernenwein, K. Feijen, M. Filipovic, G. Fontaine, M. Fuessling, S. Funk, S. Gabici, Y. A. Gallant, S. Ghafourizadeh, G. Giavitto, L. Giunti, D. Glawion, P. Goswami, G. Grolleron, M. -h. Grondin, L. Haerer, J. A. Hinton, W. Hofmann, T. L. Holch, M. Holler, D. Horns, Zhiqiu Huang, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzynski, B. Khelifi, W. Kluzniak, Nu. Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, F. Leitl, A. Lemiere, M. Lemoine-Goumard, J. -p. Lenain, F. Leuschner, T. Lohse, A. Luashvili, I. Lypova, J. Mackey, D. Malyshev, V. Marandon, P. Marchegiani, A. Marcowith, P. Marinos, G. Marti-Devesa, R. Marx, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin, J. Muller, K. Nakashima, M. de Naurois, J. Niemiec, A. Priyana Noel, S. Ohm, L. Olivera-Nieto, E. de Ona Wilhelmi, M. Ostrowski, S. Panny, M. Panter, R. D. Parsons, D. A. Prokhorov, G. Puehlhofer, M. Punch, A. Quirrenbach, P. Reichherzer, A. Reimer, O. Reimer, M. Renaud, B. Reville, F. Rieger, G. Rowell, B. Rudak, V. Sahakian, A. Santangelo, M. Sasaki, H. M. Schutte, U. Schwanke, J. N. S. Shapopi, H. Sol, A. Specovius, S. Spencer, L. Stawarz, R. Steenkamp, S. Steinmassl, I. Sushch, H. Suzuki, T. Takahashi, T. Tanaka, R. Terrier, C. Thorpe-Morgan, M. Tsirou, N. Tsuji, Y. Uchiyama, C. van Eldik, M. Vecchi, J. Veh, C. Venter, J. Vink, T. Wach, S. J. Wagner, R. White, A. Wierzcholska, Yu Wun Wong, M. Zacharias, D. Zargaryan, A. A. Zdziarski, A. Zech, S. Zouari, N. Zywucka
    ASTRONOMY & ASTROPHYSICS 672 2023年4月  
    Context. HESS J1809-193 is an unassociated very-high-energy gamma-ray source located on the Galactic plane. While it has been connected to the nebula of the energetic pulsar PSR J1809-1917, supernova remnants and molecular clouds present in the vicinity also constitute possible associations. Recently, the detection of gamma-ray emission up to energies of similar to 100 TeV with the HAWC observatory has led to renewed interest in HESS J1809-193.Aims. We aim to understand the origin of the gamma-ray emission of HESS J1809-193.Methods. We analysed 93.2 h of data taken on HESS J1809-193 above 0.27 TeV with the High Energy Stereoscopic System (H.E.S.S.), using a multi-component, three-dimensional likelihood analysis. In addition, we provide a new analysis of 12.5 yr of Fermi-LAT data above 1 GeV within the region of HESS J1809-193. The obtained results are interpreted in a time-dependent modelling framework.Results. For the first time, we were able to resolve the emission detected with H.E.S.S. into two components: an extended component (modelled as an elongated Gaussian with a 1-sigma semi-major and semi-minor axis of similar to 0.62 degrees and similar to 0.35 degrees, respectively) that exhibits a spectral cutoff at similar to 13 TeV, and a compact component (modelled as a symmetric Gaussian with a 1-sigma radius of similar to 0.1 degrees) that is located close to PSR J1809-1917 and shows no clear spectral cutoff. The Fermi-LAT analysis also revealed extended gamma-ray emission, on scales similar to that of the extended H.E.S.S. component.Conclusions. Our modelling indicates that based on its spectrum and spatial extent, the extended H.E.S.S. component is likely caused by inverse Compton emission from old electrons that form a halo around the pulsar wind nebula. The compact component could be connected to either the pulsar wind nebula or the supernova remnant and molecular clouds. Due to its comparatively steep spectrum, modelling the Fermi-LAT emission together with the H.E.S.S. components is not straightforward.
  • Yuma Aoki, Yamato Ito, Masayoshi Nobukawa, Yoshiaki Kanemaru, Keitaro Miyazaki, Kohei Kusunoki, Koji Mori, Tomokage Yoneyama, Tsubasa Tamba, Hiroshi Tomida, Hiroshi Nakajima, Hironori Matsumoto, Hirofumi Noda, Kiyoshi Hayashida, Hiroyuki Uchida, Takaaki Tanaka, Hiromasa Suzuki, Tessei Yoshida, Hiroshi Murakami, Makoto Yamauchi, Isamu Hatsukade, Kouichi Hagino, Takayoshi Kohmura, Hideki Uchiyama, Kazutaka Yamaoka, Masanobu Ozaki, Tadayasu Dotani, Hiroshi Tsunemi, Kumiko Nobukawa, Takeshi Tsuru, Shogo Kobayashi, Junko Hiraga
    Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022) 2023年3月16日  
  • F. Aharonian, F. Ait Benkhali, J. Aschersleben, H. Ashkar., M. Backes., A. Baktash, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, K. Bernloehr, B. Bi, M. Boettcher, C. Boisson, J. Bolmont, M. de Bony de Lavergne, J. Borowska, M. Bouyahiaoui, F. Bradascio, M. Breuhaus, R. Brose, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, S. Caroff, S. Casanova, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, J. Chibueze, O. Chibueze, G. Cotter, S. Dai, J. Damascene Mbarubucyeye, J. Devin, A. Djannati-Atai, A. Dmytriiev, V. Doroshenko, K. Egberts, S. Einecke, J. -P. Ernenwein, S. Fegan, G. Fichet de Clairfontaine, M. Filipovic, G. Fontaine, M. Fuessling, S. Funk, S. Gabici, S. Ghafourizadeh, G. Giavitto, D. Glawion, J. F. Glicenstein, P. Goswami, G. Grolleron, M. -H. Grondin, J. A. Hinton, T. L. Holch, M. Holler, D. Horns, Zhiqiu Huang, M. Jamrozy, F. Jankowsky, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzynski, R. Khatoon, B. Khelifi, W. Kluzniak, Nu. Komin, R. Konno, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, F. Leitl, A. Lemiere, M. Lemoine-Goumard, J. -P. Lenain, F. Leuschner, T. Lohse, I. Lypova, J. Mackey, D. Malyshev, D. Malyshev, V. Marandon, P. Marchegiani, A. Marcowith, G. Marti-Devesa, R. Marx, M. Meyer, A. Mitchell, L. Mohrmann, A. Montanari, E. Moulin, T. Murach, K. Nakashima, M. de Naurois, J. Niemiec, A. Priyana Noel, P. O'Brien, S. Ohm, L. Olivera-Nieto, E. de Ona Wilhelmi, M. Ostrowski, S. Panny, M. Panter, R. D. Parsons, G. Peron, D. A. Prokhorov, H. Prokoph, G. Puehlhofer, M. Punch, A. Quirrenbach, P. Reichherzer, A. Reimer, O. Reimer, H. Ren, M. Renaud, B. Reville, F. Rieger, G. Rowell, B. Rudak, E. Ruiz-Velasco, V. Sahakian, H. Salzmann, A. Santangelo, M. Sasaki, J. Schaefer, F. Schuessler, H. M. Schutte, U. Schwanke, J. N. S. Shapopi, A. Specovius, S. Spencer, L. Stawarz, R. Steenkamp, S. Steinmassl, C. Steppa, I. Sushch, H. Suzuki, T. Takahashi, T. Tanaka, R. Terrier, N. Tsuji, Y. Uchiyama, M. Vecchi, C. Venter, J. Vink, S. J. Wagner, R. White, A. Wierzcholska, Yu Wun Wong, M. Zacharias, D. Zargaryan, A. A. Zdziarski, A. Zech, S. J. Zhu, N. Zywucka
    ASTROPHYSICAL JOURNAL LETTERS 946(1) 2023年3月  
    GRB 221009A is the brightest gamma-ray burst (GRB) ever detected. To probe the very-high-energy (VHE; >100 GeV) emission, the High Energy Stereoscopic System (H.E.S.S.) began observations 53 hr after the triggering event, when the brightness of the moonlight no longer precluded observations. We derive differential and integral upper limits using H.E.S.S. data from the third, fourth, and ninth nights after the initial GRB detection, after applying atmospheric corrections. The combined observations yield an integral energy flux upper limit of f(UL)(95%)=9.7x10(-12)ergcm(-2)s(-1) E-thr = 650 GeV. The constraints derived from the H.E.S.S. observations complement the available multiwavelength data. The radio to X-ray data are consistent with synchrotron emission from a single electron population, with the peak in the spectral energy distribution occurring above the X-ray band. Compared to the VHE-bright GRB 190829A, the upper limits for GRB 221009A imply a smaller gamma-ray to X-ray flux ratio in the afterglow. Even in the absence of a detection, the H.E.S.S. upper limits thus contribute to the multiwavelength picture of GRB 221009A, effectively ruling out an IC-dominated scenario.
  • Tsubasa Tamba, Hirokazu Odaka, Atsushi Tanimoto, Hiromasa Suzuki, Satoshi Takashima, Aya Bamba
    The Astrophysical Journal 944(1) 2023年2月1日  
    We analyzed 39 ks NuSTAR observation data of the high mass X-ray binary Cen X-3 in order to investigate the orbital- and spin-phase spectral variability. The observation covers the orbital phase of $\Phi=0.199$-$0.414$ of the source, where $\Phi=0$ corresponds to the mid-eclipse. The orbital-phase-resolved spectroscopy revealed that low energy photons are more dominant for the spectral fluctuation, and a large part of the variability can be explained in terms of absorption by clumps of stellar wind. The spin-phase-resolved spectroscopy together with energy-resolved pulse profiles, on the other hand, presented large flux variations in high energy bands, which suggests that the origin of the variability is the different efficiency of Comptonization inside the accretion column. The energy band which includes Fe emission lines or cyclotron resonance scattering feature (CRSF) shows distinct variability compared to the nearby bands. The Fe lines show low variability along the spin phase, which indicates that the emission regions are apart from the neutron star. The central energy and strength of the CRSF are both positively correlated with the spin-phase-resolved flux, which suggests that the emitted photons face stronger magnetic fields and deeper absorption when they come from high-flux regions. We also examined the independence of the orbital- and spin-phase variability. They showed no correlation with each other and were highly independent, which implies the accretion stream is stable during the observation.
  • H. Abe, S. Abe, V. A. Acciari, T. Aniello, S. Ansoldi, L. A. Antonelli, A. Arbet Engels, C. Arcaro, M. Artero, K. Asano, D. Baack, A. Babic, A. Baquero, U. Barres de Almeida, J. A. Barrio, Batkovic, I, J. Baxter, J. Becerra Gonzalez, W. Bednarek, E. Bernardini, M. Bernardos, A. Berti, J. Besenrieder, W. Bhattacharyya, C. Bigongiari, A. Biland, O. Blanch, G. Bonnoli, Z. Bosnjak, Burelli, I, G. Busetto, R. Carosi, M. Carretero-Castrillo, G. Ceribella, Y. Chai, A. Chilingarian, S. Cikota, E. Colombo, J. L. Contreras, J. Cortina, S. Covino, G. D'Amico, D'Elia, V, P. Da Vela, F. Dazzi, A. De Angelis, B. De Lotto, A. Del Popolo, M. Delfino, J. Delgado, C. Delgado Mendez, D. Depaoli, F. Di Pierro, L. Di Venere, D. Dominis Prester, A. Donini, D. Dorner, M. Doro, D. Elsaesser, G. Emery, V. Fallah Ramazani, L. Farina, A. Fattorini, L. Font, C. Fruck, S. Fukami, Y. Fukazawa, R. J. Garcia Lopez, M. Garczarczyk, S. Gasparyan, M. Gaug, J. G. Giesbrecht Paiva, N. Giglietto, F. Giordano, P. Gliwny, N. Godinovic, R. Grau, D. Green, J. G. Green, D. Hadasch, A. Hahn, T. Hassan, L. Heckmann, J. Herrera, J. Hoang, D. Hrupec, M. Hutten, R. Imazawa, T. Inada, R. Iotov, K. Ishio, I. Jimenez Martinez, J. Jormanainen, D. Kerszberg, Y. Kobayashi, H. Kubo, J. Kushida, A. Lamastra, D. Lelas, F. Leone, E. Lindfors, L. Linhoff, S. Lombardi, F. Longo, R. Lopez-Coto, M. Lopez-Moya, A. Lopez-Oramas, S. Loporchio, A. Lorini, E. Lyard, B. Machado de Oliveira Fraga, P. Majumdar, M. Makariev, G. Maneva, N. Mang, M. Manganaro, S. Mangano, K. Mannheim, M. Mariotti, M. Martinez, A. Mas Aguilar, D. Mazin, S. Menchiari, S. Mender, S. Micanovic, D. Miceli, T. Miener, J. M. Miranda, R. Mirzoyan, E. Molina, H. A. Mondal, A. Moralejo, D. Morcuende, Moreno, V, T. Nakamori, C. Nanci, L. Nava, Neustroev, V, M. Nievas Rosillo, C. Nigro, K. Nilsson, K. Nishijima, T. Njoh Ekoume, K. Noda, S. Nozaki, Y. Ohtani, T. Oka, A. Okumura, J. Otero-Santos, S. Paiano, M. Palatiello, D. Paneque, R. Paoletti, J. M. Paredes, L. Pavletic, M. Persic, M. Pihet, G. Pirola, F. Podobnik, P. G. Prada Moroni, E. Prandini, G. Principe, C. Priyadarshi, Puljak, I, W. Rhode, M. Ribo, J. Rico, C. Righi, A. Rugliancich, N. Sahakyan, T. Saito, S. Sakurai, K. Satalecka, F. G. Saturni, B. Schleicher, K. Schmidt, F. Schmuckermaier, J. L. Schubert, T. Schweizer, J. Sitarek, Sliusar, V, D. Sobczynska, A. Spolon, A. Stamerra, J. Striskovic, D. Strom, M. Strzys, Y. Suda, T. Suric, H. Tajima, M. Takahashi, R. Takeishi, F. Tavecchio, P. Temnikov, K. Terauchi, T. Terzic, M. Teshima, L. Tosti, S. Truzzi, A. Tutone, S. Ubach, J. van Scherpenberg, M. Vazquez Acosta, S. Ventura, V. Verguilov, Viale, I, C. F. Vigorito, V. Vitale, Vovk, I, R. Walter, M. Will, C. Wunderlich, T. Yamamoto, D. Zaric, H. Abdalla, F. Aharonian, F. Ait Benkhali, E. O. Anguner, H. Ashkar, M. Backes, Baghmanyan, V, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, K. Bernloehr, M. Bottcher, C. Boisson, J. Bolmont, M. de Bony de Lavergne, F. Bradascio, M. Breuhaus, R. Brose, F. Brun, T. Bulik, T. Bylund, F. Cangemi, S. Caroff, S. Casanova, M. Cerruti, T. Chand, S. Chandra, A. Chen, O. U. Chibueze, G. Cotter, P. Cristofari, J. Damascene Mbarubucyeye, J. Devin, A. Djannati-Atai, A. Dmytriiev, K. Egberts, J-P Ernenwein, A. Fiasson, G. Fichet de Clairfontaine, G. Fontaine, M. Fuessling, S. Funk, S. Gabici, S. Ghafourizadeh, G. Giavitto, D. Glawion, J. F. Glicenstein, P. Goswami, G. Grolleron, J. A. Hinton, M. Horbe, C. Hoischen, T. L. Holch, M. Holler, D. Horns, Zhiqiu Huang, M. Jamrozy, F. Jankowsky, Joshi, V, Jung-Richardt, I, E. Kasai, K. Katarzynski, U. Katz, B. Khelifi, W. Kluzniak, Nu Komin, K. Kosack, D. Kostunin, R. G. Lang, S. Le Stum, A. Lemiere, M. Lemoine-Goumard, J-P Lenain, F. Leuschner, T. Lohse, A. Luashvili, Lypova, I, J. Mackey, J. Majumdar, D. Malyshev, D. Malyshev, Marandon, V, P. Marchegiani, G. Marti-Devesa, R. Marx, G. Maurin, M. Meyer, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin, J. Muller, T. Murach, K. Nakashima, M. de Naurois, A. Nayerhoda, J. Niemiec, A. Pniyana Noel, P. O'Brien, S. Ohm, L. Olivera-Nieto, E. de Ona Wilhelmi, M. Ostrowski, S. Panny, M. Panter, R. D. Parsons, Poireau, V, D. A. Prokhorov, H. Prokoph, G. Puehlhofer, M. Punch, A. Quirrenbach, P. Reichherzer, A. Reimer, O. Reimer, M. Renaud, F. Rieger, G. Rowell, B. Rudak, H. Rueda Ricarte, E. Ruiz-Velasco, Sahakian, V, H. Salzmann, A. Santangelo, M. Sasaki, J. Schaefer, F. Schussler, H. M. Schutte, U. Schwanke, J. N. S. Shapopi, H. Sol, A. Specovius, S. Spencer, L. Stawarz, R. Steenkamp, S. Steinmassl, C. Steppa, Sushch, I, H. Suzuki, T. Takahashi, T. Tanaka, C. Thorpe-Morgan, M. Tluczykont, L. Tomankova, N. Tsuji, Y. Uchiyama, C. van Eldik, B. van Soelen, M. Vecchi, J. Veh, C. Venter, J. Vink, S. J. Wagner, R. White, A. Wierzcholska, Yu Wun Wong, A. Yusafzai, M. Zacharias, R. Zanin, D. Zargaryan, A. A. Zdziarski, A. Zech, S. J. Zhu, S. Zouari, N. Zywucka, A. Acharyya, C. B. Adams, P. Batista, W. Benbow, M. Capasso, J. L. Christiansen, A. J. Chromey, M. Errando, A. Falcone, Q. Feng, J. P. Finley, G. M. Foote, L. Fortson, A. Furniss, A. Gent, W. E. Hanlon, O. Hervet, J. Holder, B. Hona, T. B. Humensky, W. Jin, P. Kaaret, M. Kertzman, M. Kherlakian, T. K. Kleiner, S. Kumar, M. J. Lang, M. Lundy, G. Maier, C. E. McGrath, J. Millis, P. Moriarty, R. Mukherjee, S. O'Brien, R. A. Ong, N. Park, S. R. Patel, K. Pfrang, M. Pohl, E. Pueschel, J. Quinn, K. Ragan, P. T. Reynolds, D. Ribeiro, E. Roache, J. L. Ryan, Sadeh, I, L. Saha, M. Santander, G. H. Sembroski, R. Shang, M. Splettstoesser, D. Tak, J. Tucci, A. Weinstein, D. A. Williams, T. J. Williamson, Bosch-Ramon, V, C. Celma, M. Linares, D. M. Russell, G. Sala
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 517(4) 4736-4751 2022年12月  
    MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  • F. Aharonian, H. Ashkar, M. Backes, V. Barbosa Martins, Y. Becherini, D. Berge, B. Bi, M. Bottcher, M. de Bony de Lavergne, F. Bradascio, R. Brose, F. Brun, T. Bulik, C. Burger-Scheidlin, F. Cangemi, S. Caroff, S. Casanova, M. Cerruti, T. Chand, S. Chandra, A. Chen, O. Chibueze, P. Cristofari, J. Damascene Mbarubucyeye, A. Djannati-Atai, J-P Ernenwein, K. Feijen, G. Fichet de Clairfontaine, G. Fontaine, S. Funk, S. Gabici, Y. A. Gallant, S. Ghafourizadeh, G. Giavitto, L. Giunti, D. Glawion, J. F. Glicenstein, P. Goswami, M-H Grondin, L. K. Haerer, M. Haupt, J. A. Hinton, M. Horbe, W. Hofmann, T. L. Holch, M. Holler, D. Horns, M. Jamrozy, Joshi, V, Jung-Richardt, I, E. Kasai, K. Katarzynski, U. Katz, B. Khelifi, Nu Komin, K. Kosack, D. Kostunin, G. Kukec Mezek, R. G. Lang, S. Le Stum, A. Lemiere, M. Lemoine-Goumard, J-P Lenain, F. Leuschner, T. Lohse, A. Luashvili, Lypova, I, J. Mackey, J. Majumdar, D. Malyshev, Marandon, V, P. Marchegiani, A. Marcowith, G. Marti-Devesa, R. Marx, G. Maurin, M. Meyer, A. Mitchell, R. Moderski, L. Mohrmann, A. Montanari, E. Moulin, J. Muller, T. Murach, K. Nakashima, M. de Naurois, A. Nayerhoda, J. Niemiec, S. Ohm, L. Olivera-Nieto, E. de Ona Wilhelmi, M. Ostrowski, S. Panny, M. Panter, R. D. Parsons, G. Peron, D. A. Prokhorov, G. Puehlhofer, M. Punch, A. Quirrenbach, R. Rauth, P. Reichherzer, A. Reimer, O. Reimer, M. Renaud, B. Reville, F. Rieger, G. Rowell, B. Rudak, E. Ruiz-Velasco, Sahakian, V, H. Salzmann, D. A. Sanchez, A. Santangelo, M. Sasaki, F. Schussler, H. M. Schutte, U. Schwanke, J. N. S. Shapopi, A. Specovius, R. Steenkamp, S. Steinmassl, C. Steppa, Sushch, I, H. Suzuki, T. Takahashi, T. Tanaka, R. Terrier, C. Thorpe-Morgan, M. Tsirou, N. Tsuji, R. Tuffs, T. Unbehaun, C. van Eldik, B. van Soelen, M. Vecchi, J. Veh, C. Venter, J. Vink, S. J. Wagner, R. White, A. Wierzcholska, Y. Wun Wong, M. Zacharias, D. Zargaryan, A. A. Zdziarski, S. J. Zhu, S. Zouari, N. Zywucka, R. Blackwell, C. Braiding, M. Burton, K. Cubuk, M. Filipovic, N. Tothill, G. Wong
    ASTRONOMY & ASTROPHYSICS 666 2022年10月  
    Context. Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) that are accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy, is a prime candidate for studying this hypothesis. While the very-high-energy gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. Aims. We aim to identify the physical processes responsible for the gamma-ray emission around Westerlund 1 and thus to understand the role of massive stellar clusters in the acceleration of Galactic CRs better. Methods. Using 164 h of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. Results. We detected large-scale (similar to 2 degrees diameter) gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and it is uniform across the entire source region. We did not find a clear correlation of the gamma-ray emission with gas clouds as identified through H I and CO observations. Conclusions. We conclude that, of the known objects within the region, only Westerlund 1 can explain the majority of the gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable and discussed in detail. While it seems clear that Westerlund 1 acts as a powerful particle accelerator, no firm conclusions on the contribution of massive stellar clusters to the flux of Galactic CRs in general can be drawn at this point.
  • Hiromasa Suzuki, Satoru Katsuda, Takaaki Tanaka, Nobuaki Sasaki, Tsuyoshi Inoue, Federico Fraschetti
    The Astrophysical Journal 938(1) 2022年10月1日  
    Particle acceleration physics at supernova remnant (SNR) shocks is one of the most intriguing problems in astrophysics. SNR RCW~86 provides a suitable environment for understanding the particle acceleration physics because one can extract the information of both accelerated particles and acceleration environment at the same regions through the bright X-ray emission. In this work, we study X-ray proper motions and spectral properties of the southwestern region of RCW~86. The proper motion velocities are found to be $\sim 300$--2000~km~s$^{-1}$ at a distance of 2.8~kpc. We find two inward-moving filaments, which are more likely reflected shocks rather than reverse shocks. Based on the X-ray spectroscopy, we evaluate thermal parameters such as the ambient density and temperature, and non-thermal parameters such as the power-law flux and index. From the flux decrease in time of several non-thermal filaments, we estimate the magnetic field amplitudes to be $\sim 30$--100~$\mu$G. Gathering the physical parameters, we then investigate parameter correlations. We find that the synchrotron emission from thermal-dominated filaments is correlated with the ambient density $n_{\rm e}$ as $\text{(power-law flux)} \propto n_{\rm e}^{1.0 \pm 0.2}$ and $\text{(power-law index)} \propto n_{\rm e}^{0.38 \pm 0.10}$, not or only weakly with the shock velocity and shock obliquity. As an interpretation, we propose a shock-cloud interaction scenario, where locally enhanced magnetic turbulence levels have a great influence on local acceleration conditions.
  • Ambra Di Piano, Andrea Bulgarelli, Valentina Fioretti, Leonardo Baroncelli, Nicolò Parmiggiani, Francesco Longo, Antonio Stamerra, Alicia López-Oramas, Giulia Stratta, Giovanni De Cesare, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for very-high-energy (VHE) gamma-ray astronomy, with the deployment of tens of highly sensitive and fast-reacting Cherenkov telescopes. It will cover a wide energy range (20 GeV - 300 TeV) with unprecedented sensitivity. To maximize the scientific return, the observatory will be provided with an online software system that will perform the first analysis of scientific data in real-time. This study investigates the precision and accuracy of available science tools and analysis techniques for the short-term detection of gamma-ray sources, in terms of sky localization, detection significance and, if significant detection is achieved, a first estimation of the integral photon flux. The scope is to evaluate the feasibility of the algorithms' implementation in the real-time analysis of CTA. In this contribution we present a general overview of the methods and some of the results for the test case of the short-term detection of a gamma-ray burst afterglow, as the VHE counterpart of a gravitational wave event.
  • Mario Pecimotika, Katarzyna Adamczyk, Dijana Dominis Prester, Orel Gueta, Dario Hrupec, Gernot Maier, Saša Mićanović, Lovro Pavletić, Julian Sitarek, Dorota Sobczyńska, Michał Szanecki, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA) is the future ground-based observatory for gamma-ray astronomy at very high energies. The atmosphere is an integral part of every Cherenkov telescope. Different atmospheric conditions, such as clouds, can reduce the fraction of Cherenkov photons produced in air showers that reach ground-based telescopes, which may affect the performance. Decreased sensitivity of the telescopes may lead to misconstructed energies and spectra. This study presents the impact of various atmospheric conditions on CTA performance. The atmospheric transmission in a cloudy atmosphere in the wavelength range from 203 nm to 1000 nm was simulated for different cloud bases and different optical depths using the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN output files were used as inputs for generic Monte Carlo simulations. The analysis was performed using the MAGIC Analysis and Reconstruction Software (MARS) adapted for CTA. As expected, the effects of clouds are most evident at low energies, near the energy threshold. Even in the presence of dense clouds, high-energy gamma rays may still trigger the telescopes if the first interaction occurs lower in the atmosphere, below the cloud base. A method to analyze very high-energy data obtained in the presence of clouds is presented. The systematic uncertainties of the method are evaluated. These studies help to gain more precise knowledge about the CTA response to cloudy conditions and give insights on how to proceed with data obtained in such conditions. This may prove crucial for alert-based observations and time-critical studies of transient phenomena.
  • M. Nöthe, K. Kosack, L. Nickel, M. Peresano, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory currently under construction. It will improve over the current generation of imaging atmospheric Cherenkov telescopes (IACTs) by a factor of five to ten in sensitivity and it will be able to observe the whole sky from a combination of two sites: a northern site in La Palma, Spain, and a southern one in Paranal, Chile. CTA will also be the first open gamma-ray observatory. Accordingly, the data analysis pipeline is developed as open-source software. The event reconstruction pipeline accepts raw data of the telescopes and processes it to produce suitable input for the higher-level science tools. Its primary tasks include reconstructing the physical properties of each recorded shower and providing the corresponding instrument response functions. ctapipe is a framework providing algorithms and tools to facilitate raw data calibration, image extraction, image parameterization and event reconstruction. Its main focus is currently the analysis of simulated data but it has also been successfully applied for the analysis of data obtained with the first CTA prototype telescopes, such as the Large-Sized Telescope 1 (LST-1). pyirf is a library to calculate IACT instrument response functions, needed to obtain physics results like spectra and light curves, from the reconstructed event lists. Building on these two, protopipe is a prototype for the event reconstruction pipeline for CTA. Recent developments in these software packages will be presented.
  • H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M. I. Bernardos, K. Bernlöhr, A. Berti
    Proceedings of Science 395 2022年3月18日  
    High-energy gamma rays are promising tools to constrain or reveal the nature of dark matter, in particular Weakly Interacting Massive Particles. Being well into its pre-construction phase, the Cherenkov Telescope Array (CTA) will soon probe the sky in the 20 GeV - 300 TeV energy range. Thanks to its improved energy and angular resolutions as well as significantly larger effective area when compared to the current generation of Cherenkov telescopes, CTA is expected to probe heavier dark matter, with unprecedented sensitivity, reaching the thermal annihilation cross-section at 1 TeV. This talk will summarise the planned dark matter search strategies with CTA, focusing on the signal from the Galactic centre. As observed with the Fermi LAT at lower energies, this region is rather complex and CTA will be the first ground-based observatory sensitive to the large scale diffuse astrophysical emission from that region. We report on the collaboration effort to study the impact of such extended astrophysical backgrounds on the dark matter search, based on Fermi-LAT data in order to guide our observational strategies, taking into account various sources of systematic uncertainty.
  • H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, Atreya Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M. I. Bernardos, K. Bernlöhr, A. Berti
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA) observatory is the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Building on the strengths of current IACTs, CTA is designed to achieve an order of magnitude improvement in sensitivity, with unprecedented angular and energy resolution. CTA will also increase the energy reach of IACTs, observing photons in the energy range from 20 GeV to beyond 100 TeV. These advances in performance will see CTA heralding in a new era for high-energy astrophysics, with the emphasis shifting from source discovery, to population studies and precision measurements. In this talk we discuss CTA’s ability to conduct source population studies of γ-ray bright active galactic nuclei and how this ability will enhance our understanding on the redshift evolution of this dominant γ-ray source class.
  • J. Aschersleben, R. F. Peletier, M. Vecchi, M. H.F. Wilkinson, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory and will be the major global instrument for very-high-energy astronomy over the next decade, offering 5 − 10 × better flux sensitivity than current generation gamma-ray telescopes. Each telescope will provide a snapshot of gamma-ray induced particle showers by capturing the induced Cherenkov emission at ground level. The simulation of such events provides images that can be used as training data for convolutional neural networks (CNNs) to determine the energy of the initial gamma rays. Compared to other state-of-the-art algorithms, analyses based on CNNs promise to further enhance the performance to be achieved by CTA. Pattern spectra are commonly used tools for image classification and provide the distributions of the shapes and sizes of various objects comprising an image. The use of relatively shallow CNNs on pattern spectra would automatically select relevant combinations of features within an image, taking advantage of the 2D nature of pattern spectra. In this work, we generate pattern spectra from simulated gamma-ray events instead of using the raw images themselves in order to train our CNN for energy reconstruction. This is different from other relevant learning and feature selection methods that have been tried in the past. Thereby, we aim to obtain a significantly faster and less computationally intensive algorithm, with minimal loss of performance.
  • H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M. I. Bernardos, K. Bernlöhr, A. Berti
    Proceedings of Science 395 2022年3月18日  
    Recent observations of the gamma-ray source HAWC J2227+610 by Tibet AS+MD and LHAASO confirm the special interest of this source as a galactic PeVatron candidate in the northern hemisphere. HAWC J2227+610 emits Very High Energy (VHE) gamma-rays up to 500 TeV, from a region coincident with molecular clouds and significantly displaced from the nearby pulsar J2229+6114. Even if this morphology favours an hadronic origin, both leptonic or hadronic models can describe the current VHE gamma-ray emission. The morphology of the source is not well constrained by the present measurements and a better characterisation would greatly help the understanding of the underlying particle acceleration mechanisms. The Cherenkov Telescope Array (CTA) will be the future most sensitive Imaging Atmospheric Cherenkov Telescope and, thanks to its unprecedented angular resolution, could contribute to better constrain the nature of this source. The present work investigates the potentiality of CTA to study the morphology and the spectrum of HAWC J2227+610. For this aim, the source is simulated assuming the hadronic model proposed by the Tibet AS+MD collaboration, recently fitted on multi-wavelength data, and two spatial templates associated to the source nearby molecular clouds. Different CTA layouts and observation times are considered. A 3D map based analysis shows that CTA is able to significantly detect the extension of the source and to attribute higher detection significance to the simulated molecular cloud template compared to the alternative one. CTA data does not allow to disentangle the hadronic and the leptonic emission models. However, it permits to correctly reproduce the simulated parent proton spectrum characterized by a ∼ 500 TeV cutoff.
  • H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M. I. Bernardos, K. Bernlöhr, A. Berti
    Proceedings of Science 395 2022年3月18日  
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory.
  • T. Miener, D. Nieto, A. Brill, S. Spencer, J. L. Contreras, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input.
  • Thomas P. Armstrong, Heide Costantini, Jean François Glicenstein, Jean Philippe Lenain, Ullrich Schwanke, Thomas Tavernier, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont
    Proceedings of Science 395 2022年3月18日  
    The upcoming Cherenkov Telescope Array (CTA) ground-based gamma-ray observatory will open up our view of the very high energy Universe, offering an improvement in sensitivity of 5-10 times that of previous experiments. NectarCAM is one of the proposed cameras for the Medium-Sized Telescopes (MST) which have been designed to cover the core energy range of CTA, from 100 GeV to 10 TeV. The final camera will be capable of GHz sampling and provide a field of view of 8 degrees with its 265 modules of 7 photomultiplier each (for a total of 1855 pixels). In order to validate the performance of NectarCAM, a partially-equipped prototype has been constructed consisting of only the inner 61-modules. It has so far undergone testing at the integration test-bench facility in CEA Paris-Saclay (France) and on a prototype of the MST structure in Adlershof (Germany). To characterize the performance of the prototype, Monte Carlo simulations were conducted using a detailed model of the 61 module camera in the CORSIKA/sim_telarray framework. This contribution provides an overview of this work including the comparison of trigger and readout performance on test-bench data and trigger and image parameterization performance during on-sky measurements.
  • H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M. I. Bernardos, K. Bernlöhr, A. Berti
    Proceedings of Science 395 2022年3月18日  
    In these proceedings we summarize the current status of the study of the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. Gamma-ray emission is expected in galaxy clusters both from interactions of cosmic rays (CR) with the intra-cluster medium, or as a product of annihilation or decay of dark matter (DM) particles in case they are weakly interactive massive particles (WIMPs). The observation of Perseus constitutes one of the Key Science Projects to be carried out by the CTA Consortium. In this contribution, we focus on the DM-induced component of the flux. Our DM modelling includes the substructures we expect in the main halo which will boost the annihilation signal significantly. We adopt an ON/OFF observation strategy and simulate the expected gamma-ray signals. Finally we compute the expected CTA sensitivity using a likelihood maximization analysis including the most recent CTA instrument response functions. In absence of signal, we show that CTA will allow us to provide stringent and competitive constraints on TeV DM, especially for the case of DM decay.
  • Alessandro Carosi, Alicia López-Oramas, Francesco Longo, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA) is a next generation ground-based very-high-energy gamma-ray observatory that will allow for observations in the >10 GeV range with unprecedented photon statistics and sensitivity. This will enable the investigation of the yet-marginally explored physics of short-time-scale transient events. CTA will thus become an invaluable instrument for the study of the physics of the most extreme and violent objects and their interactions with the surrounding environment. The CTA Transient program includes follow-up observations of a wide range of multi-wavelength and multi-messenger alerts, ranging from compact galactic binary systems to extragalactic events such as gamma-ray bursts (GRBs), core-collapse supernovae and bright AGN flares. In recent years, the first firm detection of GRBs by current Cherenkov telescope collaborations, the proven connection between gravitational waves and short GRBs, as well as the possible neutrino-blazar association with TXS 0506+056 have shown the importance of coordinated follow-up observations triggered by these different cosmic signals in the framework of the birth of multi-messenger astrophysics. In the next years, CTA will play a major role in these types of observations by taking advantage of its fast slewing (especially for the CTA Large Size Telescopes), large effective area and good sensitivity, opening new opportunities for time-domain astrophysics in an energy range not affected by selective absorption processes typical of other wavelengths. In this contribution we highlight the common approach adopted by the CTA Transients physics working group to perform the study of transient sources in the very-high-energy regime.
  • H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M. I. Bernardos, K. Bernlöhr, A. Berti
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA) will be the next generation very-high-energy gamma-ray observatory. CTA is expected to provide substantial improvement in accuracy and sensitivity with respect to existing instruments thanks to a tenfold increase in the number of telescopes and their state-of-the-art design. Detailed Monte Carlo simulations are used to further optimise the number of telescopes and the array layout, and to estimate the observatory performance using updated models of the selected telescope designs. These studies are presented in this contribution for the two CTA stations located on the island of La Palma (Spain) and near Paranal (Chile) and for different operation and observation conditions.
  • T. Hassan, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M. I. Bernardos, K. Bernlöhr
    Proceedings of Science 395 2022年3月18日  
    The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. Classically, data analysis in the field maximizes sensitivity by applying quality cuts on the data acquired. These cuts, optimized using Monte Carlo simulations, select higher quality events from the initial dataset. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs). An alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. In this approach, events are divided into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. This leads to an improvement in performance parameters such as sensitivity, angular and energy resolution. Data loss is reduced since lower quality events are included in the analysis as well, rather than discarded. In this study, machine learning methods will be used to classify events according to their expected angular reconstruction quality. We will report the impact on CTA high-level performance when applying such an event-type classification, compared to the classical procedure.
  • Constantin Steppa, Kathrin Egberts, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek, A. Belfiore, L. Bellizzi, R. Belmont, W. Benbow, D. Berge, E. Bernardini, M. I. Bernardos
    Proceedings of Science 395 2022年3月18日  
    At very high energies (VHE), the emission of γ rays is dominated by discrete sources. Due to the limited resolution and sensitivity of current-generation instruments, only a small fraction of the total Galactic population of VHE γ-ray sources has been detected significantly. The larger part of the population can be expected to contribute as a diffuse signal alongside emission originating from propagating cosmic rays. Without quantifying the source population, it is not possible to disentangle these two components. Based on the H.E.S.S. Galactic plane survey, a numerical approach has been taken to develop a model of the population of Galactic VHE γ-ray sources, which is shown to account accurately for the observational bias. We present estimates of the absolute number of sources in the Galactic Plane and their contribution to the total VHE γ-ray emission for five different spatial source distributions. Prospects for CTA and its ability to constrain the model are discussed. Finally, first results of an extension of our modelling approach using machine learning to extract more information from the available data set are presented.
  • Alicia López-Oramas, A. Bulgarelli, S. Chaty, M. Chernyakova, R. Gnatyk, B. Hnatyk, D. Kantzas, S. Markoff, S. McKeague, S. Mereghetti, E. Mestre, A. di Piano, P. Romano, I. Sadeh, O. Sergijenko, L. Sidoli, A. Spolon, E. de Ona Wilhelmi, G. Piano, L. Zampieri, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri
    Proceedings of Science 395 2022年3月18日  
    Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV-GeV energies. However, none of these Galactic transients have ever been detected in the very-high-energy (VHE; E>100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume different array configurations and observing strategies.
  • Olga Sergijenko, Anthony M. Brown, Damiano F.G. Fiorillo, Alberto Rosales de León, Konstancja Satalecka, Chun Fai Tung, René Reimann, Theo Glauch, Ignacio Taboada, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, I. Agudo, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai, C. Barbier, V. Barbosa Martins, M. Barcelo, M. Barkov, M. Barnard, L. Baroncelli, U. Barres de Almeida, J. A. Barrio, D. Bastieri, P. I. Batista, I. Batkovic, C. Bauer, R. Bautista-González, J. Baxter, U. Becciani, J. Becerra González, Y. Becherini, G. Beck, J. Becker Tjus, W. Bednarek
    Proceedings of Science 395 2022年3月18日  
    We investigate the possibility of detection of the VHE gamma-ray counterparts to the neutrino astrophysical sources within the Neutrino Target of Opportunity (NToO) program of CTA using the populations simulated by the FIRESONG software to resemble the diffuse astrophysical neutrino flux measured by IceCube. We derive the detection probability for different zenith angles and geomagnetic field configurations. The difference in detectability of sources between CTA-North and CTA-South for the average geomagnetic field is not substantial. We investigate the effect of a higher night-sky background and the preliminary CTA Alpha layout on the detection probability.
  • Barbara Patricelli, Alessandro Carosi, Lara Nava, Monica Seglar-Arroyo, Fabian Schüssler, Antonio Stamerra, Andrea Adelfio, Halim Ashkar, Andrea Bulgarelli, Tristano Di Girolamo, Ambra Di Piano, Thomas Gasparetto, Jarred Green, Francesco Longo, Ivan Agudo, Alessio Berti, Elisabetta Bissaldi, Giancarlo Cella, Antonio Circiello, Stefano Covino, Giancarlo Ghirlanda, Brian Humensky, Susumu Inoue, Julien Lefaucheur, Miroslav Filipovic, Massimiliano Razzano, Deivid Ribeiro, Olga Sergijenko, Giulia Stratta, Susanna Vergani, H. Abdalla, H. Abe, S. Abe, A. Abusleme, F. Acero, A. Acharyya, V. Acín Portella, K. Ackley, R. Adam, C. Adams, S. S. Adhikari, I. Aguado-Ruesga, R. Aguilera, A. Aguirre-Santaella, F. Aharonian, A. Alberdi, R. Alfaro, J. Alfaro, C. Alispach, R. Aloisio, R. Alves Batista, J. P. Amans, L. Amati, E. Amato, L. Ambrogi, G. Ambrosi, M. Ambrosio, R. Ammendola, J. Anderson, M. Anduze, E. O. Angüner, L. A. Antonelli, V. Antonuccio, P. Antoranz, R. Anutarawiramkul, J. Aragunde Gutierrez, C. Aramo, A. Araudo, M. Araya, A. Arbet-Engels, C. Arcaro, V. Arendt, C. Armand, T. Armstrong, F. Arqueros, L. Arrabito, B. Arsioli, M. Artero, K. Asano, Y. Ascasíbar, J. Aschersleben, M. Ashley, P. Attinà, P. Aubert, C. B. Singh, D. Baack, A. Babic, M. Backes, V. Baena, S. Bajtlik, A. Baktash, C. Balazs, M. Balbo, O. Ballester, J. Ballet, B. Balmaverde, A. Bamba, R. Bandiera, A. Baquero Larriva, P. Barai
    Proceedings of Science 395 2022年3月18日  
    The detection of electromagnetic (EM) emission following the gravitational wave (GW) event GW170817 opened the era of multi-messenger astronomy with GWs and provided the first direct evidence that at least a fraction of binary neutron star (BNS) mergers are progenitors of short Gamma-Ray Bursts (GRBs). GRBs are also expected to emit very-high energy (VHE, > 100 GeV) photons, as proven by the recent MAGIC and H.E.S.S. observations. One of the challenges for future multi-messenger observations will be the detection of such VHE emission from GRBs in association with GWs. In the next years, the Cherenkov Telescope Array (CTA) will be a key instrument for the EM follow-up of GW events in the VHE range, owing to its unprecedented sensitivity, rapid response, and capability to monitor a large sky area via scan-mode operation. We present the CTA GW follow-up program, with a focus on the searches for short GRBs possibly associated with BNS mergers. We investigate the possible observational strategies and we outline the prospects for the detection of VHE EM counterparts to transient GW events.
  • Hiromasa Suzuki, Aya Bamba, Ryo Yamazaki, Yutaka Ohira
    The Astrophysical Journal 924(2) 2022年1月1日  
    Supernova remnants (SNRs) are thought to be the most promising sources of Galactic cosmic rays. One of the principal questions is whether they are accelerating particles up to the maximum energy of Galactic cosmic rays ($\sim$ PeV). In this work, a systematic study of gamma-ray emitting SNRs is conducted as an advanced study of Suzuki et al. 2021. Our purpose is to newly measure the evolution of maximum particle energies with increased statistics and better age estimates. We model their gamma-ray spectra to constrain the particle-acceleration parameters. Two candidates of the maximum energy of freshly accelerated particles, the gamma-ray cutoff and break energies, are found to be well below PeV. We also test a spectral model that includes both the freshly accelerated and escaping particles to estimate the maximum energies more reliably, but no tighter constraints are obtained with current statistics. The average time dependences of the cutoff energy ($\propto t^{-0.81 \pm 0.24}$) and break energy ($\propto t^{-0.77 \pm 0.23}$) cannot be explained with the simplest acceleration condition (Bohm limit), and requires shock-ISM (interstellar medium) interaction. The average maximum energy during lifetime is found to be $\lesssim 20$ TeV $(t_{\rm M}/1~{\rm kyr})^{-0.8}$ with $t_{\rm M}$ being the age at the maximum, which reaches PeV if $t_{\rm M} \lesssim 10$ yr. The maximum energies during lifetime are suggested to have a variety of 1.1--1.8 dex from object to object. Although we cannot isolate the cause of this variety, this work provides an important clue to understand the microphysics of particle acceleration in SNRs.
  • K. Makishima, T. Tamba, Y. Aizawa, H. Odaka, H. Yoneda, T. Enoto, H. Suzuki
    The Astrophysical Journal 2021年12月1日  
  • H. Sano, H. Suzuki, K. K. Nobukawa, M. D. Filipović, Y. Fukui, T. J. Moriya
    The Astrophysical Journal 2021年12月1日  
  • H. Suzuki, P. P. Plucinsky, T. J. Gaetz, A. Bamba
    Astronomy & Astrophysics 2021年11月  
    In X-ray observations, estimation of the particle-induced background is important especially for faint and/or diffuse sources. Although software exists to generate total (sky and detector) background data suitable for a given Chandra ACIS observation, no public software exists to model the particle-induced background separately. We aim to understand the spatial and temporal variations of the particle-induced background of Chandra ACIS obtained in the two data modes, VFAINT and FAINT. Observations performed with ACIS in the stowed position shielded from the sky and the Chandra Deep Field South data sets are used. The spectra are modeled with a combination of the instrumental lines of Al, Si, Ni, and Au and continuum components. Similar spatial variations of the spectral shape are found in VFAINT and FAINT data, which are mainly due to inappropriate correction of charge transfer inefficiency for events that convert in the frame-store regions as explained by Bartalucci et al. 2014. Temporal variation of the spectral hardness ratio is found to be $\sim 10\%$ at maximum, which seems to be largely due to solar activity. We model this variation by modifying the spectral hardnesses according to the total count rate. Incorporating these properties, we have developed a tool ``mkacispback'' to generate the particle-induced background spectral model corresponding to an arbitrary celestial observation. As an example application, we use the background spectrum produced by the mkacispback tool in an analysis of the Cosmic X-ray Background in the CDF-S observations. We find an intensity of 3.10 (2.98--$3.21)\times 10^{-12}$ erg s$^{-1}$ cm$^{-2}$ deg$^{-2}$ in the 2--8 keV band, consistent with or lower than previous estimates. The tool mkacispback is available at https://github.com/hiromasasuzuki/mkacispback.
  • Hiromasa Suzuki, Aya Bamba, Shinpei Shibata
    The Astrophysical Journal 2021年6月1日  
    The age of a supernova remnant (SNR) is, though undoubtedly one of the most important properties for study of its evolution, difficult to estimate reliably in most cases. In this study, we compare the dynamical and plasma ages of the SNRs and characteristic ages of their associated pulsars with the corresponding SNRs' ages that are generally thought to be reliable ($t_{\rm r}$): historical and light-echo ages of the SNRs, kinematic ages of the ejecta knots and kinematic ages of the associated neutron stars (NS). The kinematic age of ejecta knots or a NS is the time that they have taken to reach the current positions from the explosion center. We use all of the available 24 systems for which $t_{\rm r}$ is already available (historical, light-echo, and ejecta kinematic ages) or measurable (NS kinematic age). We estimate the NS kinematic ages for eight SNR-NS systems by determining quantitatively the geometric centers of the SNR shells. The obtained $t_{\rm r}$ ranges from 33 yr to $\approx 400$ kyr. We find that the two SNR ages, dynamical and plasma ages, are consistent with $t_{\rm r}$ within a factor of four, whereas the characteristic ages of the pulsars differ from $t_{\rm r}$ by more than a factor of four in some systems. Using the $t_{\rm r}$ summarized in this work, we present the initial spin periods of the associated pulsars, which are more strictly constrained than the previous works, as well.
  • Hirokazu Odaka, Tomoaki Kasuga, Kosuke Hatauchi, Tsubasa Tamba, Satoshi Takashima, Hiromasa Suzuki, Taihei Watanabe, Sorato Nammoku, Atsushi Tanimoto, Yuki Aizawa, Aya Bamba
    SPACE TELESCOPES AND INSTRUMENTATION 2020: ULTRAVIOLET TO GAMMA RAY 11444 2021年  
    We propose a novel concept of a ultracompact hard X-ray imaging polarimeter system that utilizes the combination of a fine-pixel CMOS imaging sensor and a narrow field-of-view coded aperture mask with multiple different random patterns. An instrument using this concept can be installed in the cost-effective 6U CubeSat mission cipher, providing us a quick opportunity to demonstrate potentials of the semiconductor photoabsorption-type polarimeter by realizing imaging polarimetry of the brightest objects in an energy band of 10-30 keV. Polarization of this energy band, which is the lower part of hard X-rays, has been unexplored in spite of its great scientific importance. The science targets of cipher include particle acceleration at relativistic shocks in the Crab Nebula, the accretion flow geometry in Cygnus X-1, and the anisotropy of electrons accelerated by bright solar flares. We show by proof-of-concept experiments in SPring-8 that a CMOS sensor with a pixel size of 2.5 mu m has polarization sensitivity at energies of 10, 16, and 24 keV with modulation factors of 4.24%+/- 0.03%, 11.82%+/- 0.06%, and 15.15% +/- 0.25%, respectively. We also demonstrate that the coded aperture imaging with the different random patterns achieves artifact-reduced image decoding with an angular resolution of 30 arcseconds. The combination of these methods can be naturally extended to imaging polarimetry with high energy and angular resolutions.
  • Hiromasa Suzuki, Tsubasa Tamba, Hirokazu Odaka, Aya Bamba, Kouichi Hagino, Ayaki Takeda, Koji Mori, Takahiro Hida, Masataka Yukumoto, Yusuke Nishioka, Takeshi G. Tsuru
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 979 2020年11月  
    FORCE is a Japan-US space-based astronomy mission for an X-ray imaging spectroscopy in an energy range of 1-80 keV. The Wideband Hybrid X-ray Imager (WHXI), which is the main focal plane detector, will use a hybrid semiconductor imager stack composed of silicon and cadmium telluride (CdTe). The silicon imager will be a certain type of the silicon-on-insulator (SOI) pixel sensor, named the X-ray pixel (XRPIX) series. Since the sensor has a small pixel size (30-36 mu m) and a thick sensitive region (300-500 mu m), understanding the detector response is not trivial and is important in order to optimize the camera design and to evaluate the scientific capabilities. We have developed a framework to simulate observations of celestial sources with semiconductor sensors. Our simulation framework was tested and validated by comparing our simulation results to laboratory measurements using the XRPIX 6H sensor. The simulator well reproduced the measurement results with reasonable physical parameters of the sensor including an electric field structure, a Coulomb repulsion effect on the carrier diffusion, and arrangement of the degraded regions. This framework is also applicable to future XRPIX updates including the one which will be part of the WHXI, as well as various types of semiconductor sensors.
  • Hiromasa Suzuki, Aya Bamba, Ryo Yamazaki, Yutaka Ohira
    Publications of the Astronomical Society of Japan 72(5) 2020年10月2日  
    In this decade, GeV/TeV gamma-ray observations of several supernova remnants (SNRs) have implied that accelerated particles are escaping from their acceleration sites. However, when and how they escape from the SNR vicinities are yet to be understood. Recent studies have suggested that the particle escape might develop with thermal plasma ages of the SNRs. In this paper, we present a systematic study on time evolution of particle escape using thermal X-ray properties and gamma-ray spectra. We used 38 SNRs which associate with GeV/TeV gamma-ray emissions. We conducted spectral fittings on the gamma-ray spectra using exponential cutoff power law and broken power law models to estimate the exponential cutoff or the break energies, both of which are indicators of particle escape. The plots of the gamma-ray cutoff/break energies over the plasma ages show similar tendencies to those predicted by simple theories of the particle escape under conditions in which a shock is interacting with thin interstellar medium or clouds. The particle escape timescale is estimated as $\sim$100 kyr from decreasing trends of the total energy of the confined protons with the plasma age. The large dispersions of the cutoff/break energies of the data may suggest an intrinsic variety of particle escape environments. This might be the cause of the complicated Galactic cosmic-ray spectral shape measured on Earth.
  • Kouichi Hagino, Hirokazu Odaka, Goro Sato, Tamotsu Sato, Hiromasa Suzuki, Tsunefumi Mizuno, Madoka Kawaharada, Masanori Ohno, Kazuhiro Nakazawa, Shogo B. Kobayashi, Hiroaki Murakami, Katsuma Miyake, Makoto Asai, Tatsumi Koi, Greg Madejski, Shinya Saito, Dennis H. Wright, Teruaki Enoto, Yasushi Fukazawa, Katsuhiro Hayashi, Jun Kataoka, Junichiro Katsuta, Motohide Kokubun, Philippe Laurent, Francois Lebrun, Olivier Limousin, Daniel Maier, Kazuo Makishima, Kunishiro Mori, Takeshi Nakamori, Toshio Nakano, Hirofumi Noda, Masayuki Ohta, Rie Sato, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'ichiro Takeda, Takaaki Tanaka, Yukikatsu Terada, Hideki Uchiyama, Yasunobu Uchiyama, Shin Watanabe, Kazutaka Yamaoka, Yoichi Yatsu, Takayuki Yuasa
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS 6(4) 2020年10月  
    Understanding and reducing in-orbit instrumental backgrounds are essential to achieving high sensitivity in hard x-ray astronomical observations. The observational data of the Hard X-ray Imager (HXI) onboard the Hitomi satellite provide useful information on the background components due to its multilayer configuration with different atomic numbers: the HXI consists of a stack of four layers of Si (Z = 14) detectors and one layer of cadmium telluride (CdTe) (Z = 48, 52) detector surrounded by well-type Bi4Ge3O12 active shields. Based on the observational data, the backgrounds of the top Si layer, the three underlying Si layers, and the CdTe layer are inferred to be dominated by different components, namely, low-energy electrons, albedo neutrons, and proton-induced radioactivation, respectively. Monte Carlo simulations of the in-orbit background of the HXI reproduce the observed background spectrum of each layer well, thereby quantitatively verifying the above hypothesis. In addition, we suggest the inclusion of an electron shield to reduce the background. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
  • Tsubasa Tamba, Hirokazu Odaka, Aya Bamba, Atsushi Tanimoto, Satoshi Takashima, Hiromasa Suzuki
    Proceedings of the International Astronomical Union 16 335-337 2020年6月14日  
    We analyzed 39 ks NuSTAR data of Cen X-3 through both orbital- and pulse-phase resolved spectroscopy. Orbital-phase resolved spectra show extrinsic fluctuations due to absorption by surrounding plasma, as the spectral fluctuation mainly emerges below 10 keV. Pulse-phase resolved spectra, on the other hand, show intrinsic fluctuations depending on effectiveness of Comptonization, since the spectrum becomes hard above 10 keV at the pulse peak.

MISC

 100
  • XRISM Collaboration
    2024年8月26日  
    We present an initial analysis of the XRISM first-light observation of the supernova remnant (SNR) N132D in the Large Magellanic Cloud. The Resolve microcalorimeter has obtained the first high-resolution spectrum in the 1.6-10 keV band, which contains K-shell emission lines of Si, S, Ar, Ca, and Fe. We find that the Si and S lines are relatively narrow, with a broadening represented by a Gaussian-like velocity dispersion of $\sigma_v \sim 450$ km s$^{-1}$. The Fe He$\alpha$ lines are, on the other hand, substantially broadened with $\sigma_v \sim 1670$ km s$^{-1}$. This broadening can be explained by a combination of the thermal Doppler effect due to the high ion temperature and the kinematic Doppler effect due to the SNR expansion. Assuming that the Fe He$\alpha$ emission originates predominantly from the supernova ejecta, we estimate the reverse shock velocity at the time when the bulk of the Fe ejecta were shock heated to be $-1000 \lesssim V_{\rm rs}~[{\rm km s}^{-1}] \lesssim 3300$ (in the observer frame). We also find that Fe Ly$\alpha$ emission is redshifted with a bulk velocity of $\sim 890$ km s$^{-1}$, substantially larger than the radial velocity of the local interstellar medium surrounding N132D. These results demonstrate that high-resolution X-ray spectroscopy is capable of providing constraints on the evolutionary stage, geometry, and velocity distribution of SNRs.
  • XRISM Collaboration
    2024年8月26日  
    We present an analysis of the first two XRISM/Resolve spectra of the well-known Seyfert-1.5 active galactic nucleus in NGC 4151, obtained in December 2023. Our work focuses on the nature of the narrow Fe K$_{\alpha}$ emission line at 6.4 keV, the strongest and most common X-ray line observed in AGN. The total line is found to consist of three components. Even the narrowest component of the line is resolved with evident Fe K$_{\alpha,1}$ (6.404 keV) and K$_{\alpha,2}$ (6.391 keV) contributions in a 2:1 flux ratio, fully consistent with neutral gas with negligible bulk velocity. Subject to the limitations of our models, the narrowest and intermediate-width components are consistent with emission from optically thin gas, suggesting that they arise in a disk atmosphere and/or wind. Modeling the three line components in terms of Keplerian broadening, they are readily associated with (1) the inner wall of the ``torus,'' (2) the innermost optical ``broad line region'' (or, ``X-ray BLR''), and (3) a region with a radius of $r\simeq 100~GM/c^{2}$ that may signal a warp in the accretion disk. Viable alternative explanations of the broadest component include a fast wind component and/or scattering; however, we find evidence of variability in the narrow Fe K$_{\alpha}$ line complex on time scales consistent with small radii. The best-fit models are statistically superior to simple Voigt functions, but when fit with Voigt profiles the time-averaged lines are consistent with a projected velocity broadening of FWHM$=1600^{+400}_{-200}~{\rm km}~{\rm s}^{-1}$. Overall, the resolution and sensitivity of XRISM show that the narrow Fe K line in AGN is an effective probe of all key parts of the accretion flow, as it is currently understood. We discuss the implications of these findings for our understanding of AGN accretion, future studies with XRISM, and X-ray-based black hole mass measurements.
  • Masahiro Ichihashi, Aya Bamba, Yuichi Kato, Satoru Katsuda, Hiromasa Suzuki, Tomoaki Kasuga, Hirokazu Odaka, Kazuhiro Nakazawa
    Publications of the Astronomical Society of Japan 2024年8月1日  
    Heating of charged particles via collisionless shocks, while ubiquitous in the universe, is an intriguing yet puzzling plasma phenomenon. One outstanding question is how electrons and ions approach an equilibrium after they were heated to different immediate-postshock temperatures. In order to fill the significant lack of observational information of the downstream temperature-relaxation process, we observe a thermal-dominant X-ray filament in the northwest of SN~1006 with Chandra. We divide this region into four layers with a thickness of 15$^{\prime\prime}$ or 0.16 pc each, and fit each spectrum by a non-equilibrium ionization collisional plasma model. The electron temperature was found to increase toward downstream from 0.52-0.62 keV to 0.82-0.95 keV on a length scale of 60 arcsec (or 0.64 pc). This electron temperature is lower than thermal relaxation processes via Coulomb scattering, requiring some other effects such as plasma mixture due to turbulence and/or projection effects, etc, which we hope will be resolved with future X-ray calorimeter missions such as XRISM and Athena.
  • Koji Mori, Hiroshi Tomida, Hiroshi Nakajima, Takashi Okajima, Hirofumi Noda, Hiroyuki Uchida, Hiromasa Suzuki, Shogo Benjamin Kobayashi, Tomokage Yoneyama, Kouichi Hagino, Kumiko Nobukawa, Takaaki Tanaka, Hiroshi Murakami, Hideki Uchiyama, Masayoshi Nobukawa, Hironori Matsumoto, Takeshi Tsuru, Makoto Yamauchi, Isamu Hatsukade, Hirokazu Odaka, Takayoshi Kohmura, Kazutaka Yamaoka, Manabu Ishida, Yoshitomo Maeda, Takayuki Hayashi, Keisuke Tamura, Rozenn Boissay-Malaquin, Toshiki Sato, Tessei Yoshida, Yoshiaki Kanemaru, Junko Hiraga, Tadayasu Dotani, Masanobu Ozaki, Hiroshi Tsunemi, Shun Inoue, Ryuishi Azuma, Yuma Aoki, Yoh Asahina, Shotaro Nakamura, Takamitsu Kamei, Masahiro Fukuda, Kazunori Asakura, Marina Yoshimoto, Yuichi Ode, Tomohiro Hakamata, Mio Aoyagi, Kohei shima, Yuma Aoki, Yamato Ito, Daiki Aoki, Kaito Fujisawa, Yasuyuki Shimizu, Mayu Higuchi, Keitaro Miyazaki, Kohei Kusunoki, Yoshinori Otsuka, Haruhiko Yokosu, Wakana Yonemaru, Kazuhiro Ichikawa, Hanako Nakano, Reo takemoto, Tsukasa Matsushima, Kiyoshi Hayashida
    2024年6月28日  
    Xtend is one of the two telescopes onboard the X-ray imaging and spectroscopy mission (XRISM), which was launched on September 7th, 2023. Xtend comprises the Soft X-ray Imager (SXI), an X-ray CCD camera, and the X-ray Mirror Assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. A large field of view of $38^{\prime}\times38^{\prime}$ over the energy range from 0.4 to 13 keV is realized by the combination of the SXI and XMA with a focal length of 5.6 m. The SXI employs four P-channel, back-illuminated type CCDs with a thick depletion layer of 200 $\mu$m. The four CCD chips are arranged in a 2$\times$2 grid and cooled down to $-110$ $^{\circ}$C with a single-stage Stirling cooler. Before the launch of XRISM, we conducted a month-long spacecraft thermal vacuum test. The performance verification of the SXI was successfully carried out in a course of multiple thermal cycles of the spacecraft. About a month after the launch of XRISM, the SXI was carefully activated and the soundness of its functionality was checked by a step-by-step process. Commissioning observations followed the initial operation. We here present pre- and post-launch results verifying the Xtend performance. All the in-orbit performances are consistent with those measured on ground and satisfy the mission requirement. Extensive calibration studies are ongoing.
  • Hiromasa Suzuki, Tomokage Yoneyama, Shogo B. Kobayashi, Hirofumi Noda, Hiroyuki Uchida, Kumiko K. Nobukawa, Kouichi Hagino, Koji Mori, Hiroshi Tomida, Hiroshi Nakajima, Takaaki Tanaka, Hiroshi Murakami, Hideki Uchiyama, Masayoshi Nobukawa, Yoshiaki Kanemaru, Yoshinori Otsuka, Haruhiko Yokosu, Wakana Yonemaru, Hanako Nakano, Kazuhiro Ichikawa, Reo Takemoto, Tsukasa Matsushima, Marina Yoshimoto, Mio Aoyagi, Kohei Shima, Yuma Aoki, Yamato Ito, Kaito Fukuda, Honoka Kiyama, Daiki Aoki, Kaito Fujisawa, Yasuyuki Shimizu, Mayu Higuchi, Masahiro Fukuda, Natsuki Sakamoto, Ryuichi Azuma, Shun Inoue, Takayoshi Kohmura, Makoto Yamauchi, Isamu Hatsukade, Hironori Matsumoto, Hirokazu Odaka, Tsunefumi Mizuno, Tessei Yoshida, Yoshitomo Maeda, Manabu Ishida, Takeshi G. Tsuru, Kazutaka Yamaoka, Takashi Okajima, Takayuki Hayashi, Junko S. Hiraga, Masanobu Ozaki, Tadayasu Dotani, Hiroshi Tsunemi, Kiyoshi Hayashida
    2024年6月28日  
    XRISM (X-Ray Imaging and Spectroscopy Mission) is an astronomical satellite with the capability of high-resolution spectroscopy with the X-ray microcalorimeter, Resolve, and wide field-of-view imaging with the CCD camera, Xtend. The Xtend consists of the mirror assembly (XMA: X-ray Mirror Assembly) and detector (SXI: Soft X-ray Imager). The components of SXI include CCDs, analog and digital electronics, and a mechanical cooler. After the successful launch on September 6th, 2023 (UT) and subsequent critical operations, the mission instruments were turned on and set up. The CCDs have been kept at the designed operating temperature of $-110^\circ$C ~after the electronics and cooling system were successfully set up. During the initial operation phase, which continued for more than a month after the critical operations, we verified the observation procedure, stability of the cooling system, all the observation options with different imaging areas and/or timing resolutions, and operations for protection against South Atlantic Anomaly. We optimized the operation procedure and observation parameters including the cooler settings, imaging areas for the specific modes with higher timing resolutions, and event selection algorithm. We summarize our policy and procedure of the initial operations for SXI. We also report on a couple of issues we faced during the initial operations and lessons learned from them.

担当経験のある科目(授業)

 2

所属学協会

 4

共同研究・競争的資金等の研究課題

 4