研究者業績

船木 一幸

フナキ イッコウ  (Ikkoh Funaki)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙飛翔工学研究系 教授
総合研究大学院大学 物理科学研究科 宇宙科学専攻 教授
学位
博士(工学)(1995年3月 東京大学)

J-GLOBAL ID
200901056190267532
researchmap会員ID
1000253787

外部リンク

論文

 272
  • Yuki Murayama, Ryota Hara, Yoshiki Yamagiwa, Yuya Oshio, Hiroyuki Nishida, Ikkoh Funaki
    Journal of Evolving Space Activities 71(2) 67-77 2024年3月  査読有り
  • Yoshiki Matsunaga, Toru Takahashi, Hiroki Watanabe, Shinatora Cho, Hiroaki Kusawake, Kazuhiro Kajiwara, Fujio Kurokawa, Ikkoh Funaki
    Acta Astronautica 213 645-656 2023年10月  査読有り
  • Frank Jansen, Tommaso Andreussi, Giovanni Cesarretti, Manfred Ehresmann, Julia Grill, Georg Herdrich, Ikkoh Funaki, Nathalie Girard, Jan Thimo Grundmann, David Krejci, Hans Leiter, Frederic Masson, Volker Maiwald, Tommaso Misuri, Stephane Oriol, Antonio Piragino, Alexander Reissner, Lars Schanz
    10(1) 2023年4月17日  査読有り
  • 村山裕輝, 原亮太, 山極芳樹, 大塩裕哉, 西田浩之, 船木一幸
    日本航空宇宙学会論文集 2023年4月  査読有り
  • Kazuki Ishihara, Kentaro Yoneyama, Hiroaki Watanabe, Noboru Itouyama, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Kazuyuki Higashino
    Journal of Propulsion and Power 1-11 2023年2月21日  査読有り
    Rotating detonation engines (RDEs) have been actively researched around the world for application to next-generation aerospace propulsion systems because detonation combustion has theoretically higher thermal efficiency than conventional combustion. Moreover, because cylindrical RDEs have simpler combustors, further miniaturization of conventional combustors is expected. Therefore, in this study, with the aim of applying RDEs to space propulsion systems, a cylindrical RDE with a converging–diverging nozzle was manufactured; the combustor length [Formula: see text] was changed to 0, 10, 30, 50, and 200 mm; and the thrust performance and combustion mode with the different combustor lengths were compared. As a result, four combustion modes were confirmed. Detonation combustion occurred with a combustor length of [Formula: see text]: that is, a converging rotating detonation engine. The thrust performance of this engine was 94 to 100% of the theoretical rocket thrust performance, which is equivalent to the thrust performance of conventional rocket combustion generated at [Formula: see text]. This study shows that detonation combustion can significantly reduce engine weight while maintaining thrust performance.

MISC

 206
  • 大塩裕哉, 上野一磨, 船木一幸
    宇宙科学技術連合講演会講演集(CD-ROM) 54th ROMBUNNO.1B08 2010年  
  • 大塩裕哉, 上野一磨, 船木一幸
    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM) 42nd-2010 ROMBUNNO.1D8 2010年  
  • 上野一磨, 大塩裕哉, 船木一幸
    スペース・プラズマ研究会 2009(CD-ROM) ROMBUNNO.9 2010年  
  • Tomoya Fujimoto, Hirotaka Otsu, Ikkoh Funaki, Yoshiki Yamagiwa
    Transactions of the Japan Society for Aeronautical and Space Sciences 53(180) 84-90 2010年  
    To propel a spacecraft away from the Sun, a magneto plasma sail (MPS) spacecraft produces an artificial magnetic cavity to block the hypersonic solar wind. To make a large magnetic cavity sufficient to obtain significant thrust, the MPS spacecraft increases the magnetic cavity size using an onboard coil with assistance from a plasma jet. This process is called magnetic field inflation. In this study, we performed ideal and resistive magneto hydrodynamic (MHD) analyses to investigate the magnetic diffusion effect on the magnetic field inflation process. Our results indicate that a dipole-like magnetic field is drastically deformed by a plasma jet when the magnetic Reynolds number Rm was 10 or more, the magnetic field lines were nearly identical to the streamlines of the plasma jet. Hence, no magnetic diffusion effect appeared for Rm &gt 10. Meanwhile, when Rm is an order of unity, the magnetic diffusion effect was remarkable in the current sheet formed around equatorial region. For example, when the divergence angle of a plasma jet in the polar direction was 30°, the magnetic field strength at 40m from the spacecraft (calculated by resistive MHD model) was 19% smaller than the ideal MHD model (Rm=∞). © 2010 The Japan Society for Aeronautical and Space Sciences.
  • Hideyuki Horisawa, Yusuke Sasaki, Tadaki Shinohara, Ikkoh Funaki
    Transactions of JSASS Space Technology Japan 8 Vol. 8, (2010) pp. 2010年  
  • Yoshihiro Kajimura, Kazuma Ueno, Ikkoh Funaki, Hideyuki Usui, Masanori Nunami, Iku Shinohara, Masao Nakamura, Hiroshi Yamakawa
    Transactions of JSASS Space Technology Japan 8 Pb_19-Pb_25 2010年  
  • UENO Kazuma, FUNAKI Ikkoh, AYABE Tomohiro, OSHIO Yuya, HORISAWA Hideyuki
    Advances in Applied Plasma Science 7 107-110 2009年8月20日  
  • 上野一磨, 綾部友洋, 大塩裕也, 船木一幸, 堀澤秀之
    スペース・プラズマ研究会 2008 50-53 2009年6月  
  • 川村静児, 安東正樹, 瀬戸直樹, 佐藤修一, 船木一幸, 神田展行, 中村卓史, 坪野公夫, 沼田健司, 田中貴浩, 井岡邦仁, 高島健, 新谷昌人, 坂井真一郎, 中澤知洋, 長野重夫, 武者満, 森脇成典, 青柳巧介, 我妻一博, 浅田秀樹, 麻生洋一, 新井宏二, 池上健, 石川毅彦, 石崎秀晴, 石徹白晃治, 石原秀樹, 市來淨與, 伊東宏之, 伊藤洋介, 井上開輝, 上田暁俊, 植田憲一, 歌島昌由, 江尻悠美子, 榎基宏, 戎崎俊一, 江里口良治, 大石奈緒子
    日本物理学会講演概要集 64(1) 100 2009年3月3日  
  • 船木一幸, 篠原育, 中野正勝, 梶村好宏, 中山宜典, 宮坂武志, 百武徹, 國中均
    日本航空宇宙学会年会講演会講演集(CD-ROM) 40th C01 2009年  
  • Kiyoshi Kinefuchi, Ikkoh Funaki, Hiroyuki Ogawa, Teruo Kato, Sumitaka Tachikawa, Toru Shimada, Takashi Abe
    47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2009年  
    In rocket flights, ionized exhaust plumes from solid rocket motors may interfere with RF transmission under some conditions. In order to clarify the important physical process involved, microwave attenuation and phase delay due to rocket exhaust plumes were measured during sea-level static firing tests conducted on two types of full-scale solid propellant rocket motors. The measured data were analyzed by comparing them with numerical results such as flowfield simulations of exhaust plumes and by employing a detailed analysis of microwave transmission by using a frequency-dependent finite-difference time-domain (FD2TD) method. The results revealed that either the line-of-sight microwave transmission through ionized plumes or the diffracted path around the exhaust plume mainly affects the received RF level, which depends on the magnitude of the plasma RF interaction. For the actual launch vehicle flight, the transmission process is dominated by the diffraction effect so that we applied a two-dimensional diffraction theory to analyze the communication between a vehicle and a ground station. The attenuation levels estimated using diffraction theory agree with the data recorded in-flight. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
  • 上野一磨, 船木一幸, 大塩裕哉, 堀澤秀之, 山川宏
    宇宙科学技術連合講演会講演集(CD-ROM) 53rd 2L06 2009年  
  • 大塩裕哉, 上野一磨, 船木一幸
    宇宙科学技術連合講演会講演集(CD-ROM) 53rd 1K08 2009年  
  • 梶村好宏, 上野一磨, 船木一幸, 臼井英之, 沼波政倫, 篠原育, 中村雅夫, 山川宏
    日本航空宇宙学会年会講演会講演集(CD-ROM) 40th B09 2009年  
  • 大塩裕哉, 船木一幸, 上野一磨, 綾部友洋, 堀澤秀之
    日本航空宇宙学会年会講演会講演集(CD-ROM) 40th B14 2009年  
  • Ikkoh Funaki, Kazuma Ueno, Yuya Oshio, Tomohiro Ayabe, Hideyuki Horisawa, Hiroshi Yamakawa
    AIP Conference Proceedings 1084 754-759 2009年  査読有り
    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 1019 m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail. © 2009 American Institute of Physics.
  • Y. Minami, I. Funaki, H. Yamakawa, T. Nakamura, H. Nishida, D. Sasaki, H. Yonekura, H. Kojima, Y. Ueda
    AIP Conference Proceedings 1084 721-+ 2009年  査読有り
  • Shuichi Sato, Seiji Kawamura, Masaki Ando, Takashi Nakamura, Kimio Tsubono, Akito Araya, Ikkoh Funaki, Kunihito Ioka, Nobuyuki Kanda, Shigenori Moriwaki, Mitsuru Musha, Kazuhiro Nakazawa, Kenji Numata, Shin Ichiro Sakai, Naoki Seto, Takeshi Takashima, Takahiro Tanaka, Kazuhiro Agatsuma, Koh Suke Aoyanagi, Koji Arai, Hideki Asada, Yoichi Aso, Takeshi Chiba, Toshikazu Ebisuzaki, Yumiko Ejiri, Motohiro Enoki, Yoshiharu Eriguchi, Masa Katsu Fujimoto, Ryuichi Fujita, Mitsuhiro Fukushima, Toshifumi Futamase, Katsuhiko Ganzu, Tomohiro Harada, Tatsuaki Hashimoto, Kazuhiro Hayama, Wataru Hikida, Yoshiaki Himemoto, Hisashi Hirabayashi, Takashi Hiramatsu, Feng Lei Hong, Hideyuki Horisawa, Mizuhiko Hosokawa, Kiyotomo Ichiki, Takeshi Ikegami, Kaiki TInoue, Koji Ishidoshiro, Hideki Ishihara, Takehiko Ishikawa, Hideharu Ishizaki, Hiroyuki Ito, Yousuke Itoh, Nobuki Kawashima, Fumiko Kawazoe, Kishimoto Naoko, Kenta Kiuchi, Shiho Kobayashi, Kazunori Kohri, Hiroyuki Koizumi, Yasufumi Kojima, Keiko Kokeyama, Wataru Kokuyama, Kei Kotake, Yoshihide Kozai, Hideaki Kudoh, Hiroo Kunimori, Hitoshi Kuninaka, Kazuaki Kuroda, Kei Ichi Maeda, Hideo Matsuhara, Yasushi Mino, Osamu Miyakawa, Shinji Miyoki, Mutsuko YMorimoto, Tomoko Morioka, Toshiyuki Morisawa, Shinji Mukohyama, Shigeo Nagano, Isao Naito, Kouji Nakamura, Hiroyuki Nakano, Kenichi Nakao, Shinichi Nakasuka, Yoshinori Nakayama, Erina Nishida, Kazutaka Nishiyama, Atsushi Nishizawa, Yoshito Niwa, Taiga Noumi, Yoshiyuki Obuchi, Masatake Ohashi, Naoko Ohishi, Masashi Ohkawa, Norio Okada, Kouji Onozato, Kenichi Oohara, Norichika Sago, Motoyuki Saijo, Masaaki Sakagami, Shihori Sakata, Misao Sasaki
    Journal of Physics: Conference Series 154 2009年  査読有り
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a differential Fabry-Perot interferometer. We plan to launch DECIGO in middle of 2020s, after sequence of two precursor satellite missions, DECIGO pathfinder and Pre-DECIGO, for technology demonstration required to realize DECIGO and hopefully for detection of gravitational waves from our galaxy or nearby galaxies. © 2009 IOP Publishing Ltd.
  • FUNAKI Ikkoh, UENO Kazuma, KIMURA Toshiyuki, AYABE Tomohiro, HORISAWA Hideyuki
    スペース・プラズマ研究会 2007 86-89 2008年7月  
  • AYABE Tomohiro, UENO Kazuma, KIMURA Toshiyuki, HORISAWA Hideyuki, FUNAKI Ikko, YAMAKAWA Hiroshi
    衝撃波シンポジウム講演論文集 2007 57-60 2008年3月17日  
  • 佐々木大祐, 藤本, 船木一幸, 山川宏, 南祐一郎, 小嶋浩嗣, 上田義勝, 臼井英之
    RISH KDKシンポジウム 2008年3月  
  • 綾部友洋, 木村俊之, 上野一磨, 堀澤秀之, 船木一幸, 山川宏
    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集 40th-2008 205-208 2008年  
  • Sasaki D, Funaki I, Yamakawa H, Usui H, Kojima H
    26th International Symposium on Rarefied Gas Dynamics, 2008/7/21-25, Kyoto, 784-789 2008年  査読有り
  • K. Ueno, I. Funaki, T. Kimura, T. Ayabe, H. Yamakawa, H. Horisawa
    44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2008年  査読有り
  • S. Kawamura, M. Ando, T. Nakamura, K. Tsubono, T. Tanaka, I. Funaki, N. Seto, K. Numata, S. Sato, K. Ioka, N. Kanda, T. Takashima, K. Agatsuma, T. Akutsu, T. Akutsu, K.-S. Aoyanagi, K. Arai, Y. Arase, A. Araya, H. Asada, Y. Aso, T. Chiba, T. Ebisuzaki, M. Enoki, Y. Eriguchi, M.-K. Fujimoto, R. Fujita, M. Fukushima, T. Futamase, K. Ganzu, T. Harada, T. Hashimoto, K. Hayama, W. Hikida, Y. Himemoto, H. Hirabayashi, T. Hiramatsu, F.-L. Hong, H. Horisawa, M. Hosokawa, K. Ichiki, T. Ikegami, K.T. Inoue, K. Ishidoshiro, H. Ishihara, T. Ishikawa, H. Ishizaki, H. Ito, Y. Itoh, S. Kamagasako, N. Kawashima, F. Kawazoe, H. Kirihara, N. Kishimoto, K. Kiuchi, S. Kobayashi, K. Kohri, H. Koizumi, Y. Kojima, K. Kokeyama, W. Kokuyama, K. Kotake, Y. Kozai, H. Kudoh, H. Kunimori, H. Kuninaka, K. Kuroda, K.-I. Maeda, H. Matsuhara, Y. Mino, O. Miyakawa, S. Miyoki, Y. Morimoto, T. Morioka, T. Morisawa, S. Moriwaki, S. Mukohyama, M. Musha, S. Nagano, I. Naito, N. Nakagawa, K. Nakamura, H. Nakano, K. Nakao, S. Nakasuka, Y. Nakayama, E. Nishida, K. Nishiyama, A. Nishizawa, Y. Niwa, M. Ohashi, N. Ohishi, M. Ohkawa, A. Okutomi, K. Onozato, K. Oohara, N. Sago, M. Saijo, M. Sakagami, S.-I. Sakai, S. Sakata, M. Sasaki, T. Sato, M. Shibata, H. Shinkai, K. Somiya, H. Sotani, N. Sugiyama, Y. Suwa, H. Tagoshi, K. Takahashi, K. Takahashi, T. Takahashi, H. Takahashi, R. Takahashi, R. Takahashi, A. Takamori, T. Takano, K. Taniguchi, A. Taruya, H. Tashiro, M. Tokuda, M. Tokunari, M. Toyoshima, S. Tsujikawa, Y. Tsunesada, K.-I. Ueda, M. Utashima, H. Yamakawa, K. Yamamoto, T. Yamazaki, J. Yokoyama, C.-M. Yoo, S. Yoshida, T. Yoshino
    Journal of Physics: Conference Series 122 2008年  査読有り
  • 南祐一郎, 佐々木大祐, 山川宏, 中村武恒, 船木一幸, 小嶋浩嗣, 上田義勝
    第51回宇宙科学技術連合講演会・ 札幌 2007年10月  
  • 南祐一郎, 山川宏, 小嶋浩嗣, 上田義勝, 中村武恒, 船木一幸
    日本地球惑星科学連合大会・ J250-P001(ポスター)・ 幕張メッセ・ 千葉 2007年5月  
  • 船木一幸, 中野正勝, 中山宜典, 梶村好宏
    宇宙航空研究開発機構特別資料 JAXA-SP- (06-019) 75-81 2007年3月30日  
  • 船木一幸, 山川宏
    プラズマ核融合学会誌 Vol.83(No.3) 281-284 2007年3月  
  • 瀬戸 直樹, 川村 静児, 安東 正樹, 中村 卓史, 坪野 公夫, 田中 貴浩, 船木 一幸, 沼田 健司, 佐藤 修一, 神田 展行, 高島 健, 井岡 邦仁, 青柳 巧介, 我妻 一博, 阿久津 智忠, 阿久津 朋美, 浅田 秀樹, 麻生 洋一, 新井 宏二, 荒瀬 勇太, 新谷 昌人, 池上 健, 石川 毅彦, 石崎 秀晴, 石徹白 晃治, 石原 秀樹, 市來 淨與, 伊東 宏之, 伊藤 洋介, 井上 開輝, 植田 憲一, 歌島 昌由, 榎 基宏, 戎崎 俊一, 江里口 良治, 大石 奈緒子, 大河 正志, 大橋 正健, 大原 謙一, 奥冨 聡, 小野里 光司, 鎌ヶ迫 将悟, 河島 信樹, 川添 史子, 雁津 克彦, 木内 建太, 岸本 直子, 桐原 裕之, 工藤 秀明, 國中 均, 國森 裕生, 黒田 和明, 小泉 宏之, 洪 鋒雷, 郡 和範, 穀山 渉, 苔山 圭以子, 古在 由秀, 小嶌 康史, 固武 慶, 小林 史歩, 西條 統之, 坂井 真一郎, 阪上 雅昭, 阪田 紫帆里, 佐合 紀親, 佐々木 節, 佐藤 孝, 柴田 大, 真貝 寿明, 杉山 直, 諏訪 雄大, 宗宮 健太郎, 祖谷 元, 高野 忠, 高橋 走, 高橋 慶太郎, 高橋 忠幸, 高橋 弘毅, 高橋 龍一, 高橋 竜太郎, 高森 昭光, 田越 秀行, 田代 寛之, 谷口 敬介, 樽家 篤史, 千葉 剛, 辻川 信二, 常定 芳基, 徳田 充, 徳成 正雄, 豊嶋 守生, 内藤 勲夫, 中尾 憲一, 中川 憲保, 中須賀 真一, 中野 寛之, 長野 重夫, 中村 康二, 中山 典宜, 西澤 篤志, 西田 恵里奈, 西山 和孝, 丹羽 佳人, 橋本 樹明
    日本物理学会講演概要集 62 2007年  
  • FUNAKI Ikkoh, UENO Kazuma, KIMURA Toshiyuki, HORISAWA Hideyuki, YAMAKAWA Hiroshi
    Collection of Technical Papers. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Vol.8, 2007 8 8410-8418 2007年  
  • 木村俊之, 上野一磨, 船木一幸, 山川宏, 堀澤秀之
    宇宙科学技術連合講演会講演集(CD-ROM) 51st 2E17 2007年  
  • 上野一磨, 木村俊之, 船木一幸, 堀澤秀之, 山川宏
    平成18年度宇宙輸送シンポジウム, Jan-07 相模原、2007 2007年  査読有り
  • 木村俊之, 船木一幸, 山川宏, 堀澤秀之
    平成18年度宇宙輸送シンポジウム, Jan-07,相模原, 2007 2007年  査読有り
  • 船木一幸, 山川宏
    マグセイル・ワーキンググループについて,平成18 年度宇宙プラズマ研究会2007/3/22-23相模原2007 2007年  査読有り
  • 上野一磨, 木村俊之, 船木一幸, 堀澤秀之, 山川宏
    平成18年度宇宙プラズマ研究会, 2007/3/22-23, 相模原, 2007 2007年  査読有り
  • 船木一幸, 山川宏
    平成18年度衝撃波シンポジウム, Mar-07, 北九州, 2007 2007年  査読有り
  • 山川宏, 船木一幸
    航空原動機宇宙推進講演会, 2007/3/1-2, 姫路, 2007 2007年  査読有り
  • I. Funaki, H. Yamakawa
    宇宙航空研究開発機構・情報・計算工学センター・衛星環境プラズマ数値シミュレーションワークショップ報告書,宇宙航空研究開発機構特別資料,JAXA-SP-06-014, pp. 100-110 2007年  査読有り
  • H. Nishida, H. Ogawa, I. Funaki, H. Yamakawa, Y. Inatani
    宇宙航空研究開発機構・情報・計算工学センター・衛星環境プラズマ数値シミュレーションワークショップ報告書, 宇宙航空研究開発機構特別資料,JAXA-SP-06-014, pp. 111-121 2007年  査読有り
  • 上野一磨, 木村俊之, 船木一幸, 清水幸夫, 山川宏, 堀澤秀之
    衝撃波シンポジウム講演論文集 2005 333-334 2006年3月16日  
  • 船木一幸, 山川宏, 藤田和央
    磁気プラズマセイルの推力発生メカニズムの解明,JAXA RR (Research and Development Report) -05-014, Edited by I. Funaki and H. Yamakawa 2006年  査読有り
  • 小嶋秀典, 船木一幸, 清水幸夫, 山川宏
    ISAS Research Note, Vol. 807 2006年  査読有り
  • I. Funaki, H. Kojima, Y. Shimizu, Y. Nakayama, K. Toki, H. Yamakawa, S. Shinohara
    JAXA RR (Research and Development Report) -05-014, Edited by I. Funaki and H. Yamakawa 2006年  査読有り
  • Ikkoh Funaki, Hiroshi Yamakawa, Yukio Shimizu, Yoshinori Nakayama, Hideyuki Horisawa, Kazuma Ueno, Toshiyuki Kimura
    Collection of Technical Papers - AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference 11 8669-8682 2006年  査読有り
    In order to simulate the interaction between the artificially deployed magnetic field produced around a magnetic sail spacecraft and the solar wind, a laboratory simulator in a space chamber was designed. As a solar wind simulator, a high-power magnetoplasmadynamic arcjet was operated in a quasisteady mode of about 0.8 ms duration to provide a high-speed hydrogen plasma plume of about 0.7 m in diameter, which is accelerated to above 20 km/s with high plasma densities around 1017-1019 m-3. Into this high-density and high-velocity plasma jet, a small coil of 2-cm-diameter was immersed to obtain 1.9-T magnetic field at the center of the coil. These devices are operation in a large 2-m-diameter space chamber, and the formation of a magnetic cavity was observed around the coil. From the analysis of scaling parameters, it is found that the laboratory experiment of the plasma flow around the coil of the magnetic sail corresponds to a sub-Newton-class magnetic sail.
  • 船木一幸, 山川宏, 磁気プラズマセイル研究会
    宇宙科学シンポジウム2006/12/21-22, 相模原2006 2006年  査読有り
  • 船木一幸, 山川宏編
    JAXA-RR-05-014 1-63 2006年1月  
  • R. Asahi, I. Funaki, H. Yamakawa, K. Fujita
    ISAS Research Note, Vol. 789 2005年  査読有り
  • T. Minami, I. Funaki, H. Yamakawa, Y. Nakayama
    ISAS Research Note, Vol. 790 2005年  査読有り

主要な書籍等出版物

 6
  • 船木 一幸, 山川 宏
    In-Tech 2012年3月 (ISBN: 9789535103394)

講演・口頭発表等

 561

共同研究・競争的資金等の研究課題

 28

産業財産権

 4